Skip to main content
Log in

A study of the electrophoretic deposition of thin-film coatings based on barium cerate nanopowder produced by laser evaporation

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The method of laser ablation of a target, followed by condensation, was used to obtain a weakly aggregated BCSO nanopowder from barium cerate. The dispersity, fraction composition of the nanopowder, electrokinetic potential of its nonaqueous dispersions, and electrokinetic parameters of the electrophoretic deposition process were determined. An ultrasonic treatment produced a stable suspension of the BCSO nanopowder in a mixed isopropanol–acetyl acetone medium (70/30 vol %). The suspension is characterized by a high and positive ζ-potential of +30 mV. The electrophoretic deposition onto a dense model cathode was used to obtain thin-film BCSO coatings that are of interest for the technology of solid-oxide fuel cells. The phase composition of the coating was examined. It was found that the successive annealings of the nanopowder at temperatures of 800–1400°C make it possible to reduce the content of unidentified crystalline phases in BCSO to trace levels (< 5 vol %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mogensen, M., Sammes, N.M., and Tompsett, G.A., Solid State Ionics, 2000, vol. 129, nos. 1–4, pp. 63–94.

    Article  CAS  Google Scholar 

  2. Mori, T., Drennan, J., Wang, Y., et al., J. Electrochem. Soc., 2003, vol. 150, pp. A665–A673.

    Article  CAS  Google Scholar 

  3. Sha, X., Huang, Z.L.X., Miao, J., et al., J. Alloys Compd., 2007, vol. 428, pp. 59–64.

    Article  CAS  Google Scholar 

  4. Dudek, M., J. Eur. Ceram. Soc., 2008, vol. 28, pp. 965–971.

    Article  CAS  Google Scholar 

  5. Atkinson, A., Solid State Ionics, 1997, vol. 95, nos. 3–4, pp. 249–258.

    Article  CAS  Google Scholar 

  6. Medvedev, D., Murashkina, A., Pikalova, E., et al., Progress Mater. Sci., 2014, vol. 60, pp. 72–129.

    Article  CAS  Google Scholar 

  7. Medvedev, D., Lyagaeve, J.G., Gordova, E.V., et al., Progress Mater. Sci., 2016, vol. 75, pp. 38–79.

    Article  CAS  Google Scholar 

  8. Medvedev, D.A., Pikalova, E.Yu., Demin, A.K., et al., Russ. J. Phys. Chem. A, 2013, vol. 87, pp. 270–277.

    Article  CAS  Google Scholar 

  9. Ranran, P., Yan, W., Lizhai, Y., and Zongqiang, M., Solid State Ionics, 2006, vol. 177, pp. 389–393.

    Article  Google Scholar 

  10. Hirabayashi, D., Tomita, A., Teranishi, S., et al., Solid State Ionics, 2005, vol. 176, pp. 881–887.

    Article  CAS  Google Scholar 

  11. Dubal, S.U., Bhosale, C.H., and Jadhav, L.D., Ceram. Int., 2015, vol. 41, pp. 5607–5613.

    Article  CAS  Google Scholar 

  12. Ranran, P., Yan, W., Lizhai, Y., and Zongqiang, M., Solid State Ionics, 2006, vol. 177, pp. 389–393.

    Article  Google Scholar 

  13. Besra, L. and Liu, M., Progress Mater. Sci., 2007, vol. 52, pp. 1–61.

    Article  CAS  Google Scholar 

  14. Corni, I., Ryan, Mary P., and Boccaccini, Aldo R., J. Eur. Ceram. Soc., 2008, vol. 28, pp. 1353–1367.

    Article  CAS  Google Scholar 

  15. Ivanov, M., Kotov, Yu., Komarov, V., et al., Fotonika, 2009, vol. 3, pp.18–20.

    Google Scholar 

  16. Bhosale, A.G., Kadam, M.B., Rajeev, J., et al., J. Alloys Compd., 2009, vol. 484, pp. 795–800.

    Article  CAS  Google Scholar 

  17. Talebi, T., Raissi, B., and Maghsoudipour, A., Int. J. Hydrogen Energy, 2010, vol. 35, pp. 9434–9439.

    Article  CAS  Google Scholar 

  18. Guo, F., Javed, A., Shapiro, I.P., and Xiao, P., J. Eur. Ceram. Soc., 2012, vol. 32, pp. 211–218.

    Article  Google Scholar 

  19. Das, D., Bagchi, B., and Basu, R.N., J. Alloys Compd., 2017, vol. 693, pp. 1220–1230.

    Article  CAS  Google Scholar 

  20. Kalinina, E.G., Safronov, A.P., and Kotov, Yu.A., Russ. J. Electrochem., 2011, vol. 47, pp. 671–675.

    Article  CAS  Google Scholar 

  21. Kalinina, E.G., Efimov, A.A., and Safronov, A.P., Thin Solid Films, 2016, vol. 612, no. 1, pp. 66–71.

    Article  CAS  Google Scholar 

  22. Kalinina, E.G., Samatov, O.M., and Safronov, A.P., Inorg. Mater., 2016, vol. 52, no. 8, pp. 858–864.

    Article  CAS  Google Scholar 

  23. Kalinina, E.G., Pikalova, E.Yu., Menshikova, A.V., and Nikolaenko, I.V., Solid State Ionics, 2016, vol. 288, pp. 110–114.

    Article  CAS  Google Scholar 

  24. Kalinina, E.G., Pikalova, E.Yu., Kolchugin, A.A., et al., Solid State Ionics, 2017, vol. 302, pp. 126–132.

    Article  CAS  Google Scholar 

  25. Pikalova, E.Yu., Nikonov, A.V., Zhuravlev, V.D., et al., Inorg. Mater., 2011, vol. 47, no. 4, pp. 396–401.

    Article  CAS  Google Scholar 

  26. Kosmulski, M., Chemical Properties of Material Surfaces, New York: Marcel Dekker, 2001.

    Book  Google Scholar 

  27. Safronov, A.P., Kalinina, E.G., Smirnova, T.A., et al., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 12, pp. 2122–2127.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kalinina.

Additional information

Original Russian Text © E.G. Kalinina, E.Yu. Pikalova, A.P. Safronov, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 5, pp. 564−570.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.G., Pikalova, E.Y. & Safronov, A.P. A study of the electrophoretic deposition of thin-film coatings based on barium cerate nanopowder produced by laser evaporation. Russ J Appl Chem 90, 701–707 (2017). https://doi.org/10.1134/S1070427217050056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217050056

Navigation