Skip to main content
Log in

Electrochemical Growth of Sponge/Raspberry-Like Gold Nanoclusters at the Carbon Rod

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

For the first time, the positive carbon rod of zinc-carbon battery (battery carbon rod electrode, BCRE) was used as a new working electrode and its electrochemical behavior was compared with carbon paste and glassy carbon electrodes in KCl solution containing Fe(CN6)3–/4– ions as probe agent. Then, the sponge/raspberry-like Au nanoclusters (AuNCs) were synthesized on BCRE by one-step electrodeposition of HAuCl4 in phosphate and nitrate buffer solution and the electrochemical properties of surfaces was investigated in probe media and sulfuric acid. This fabrication method was simple, facile and controllable, without any seed, template or surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sepeur, S., Nanotechnology Technical Basics and Applications, Vincentz, Hannover, 2008.

    Google Scholar 

  2. Seo, B., Choi, S., and Kim, J., Simple electrochemical deposition of Au nanoplates from Au (I) cyanide complexes and their electrocatalytic activities, ACS Appl. Mater. Interfaces, 2011, vol. 3, p.441.

    Article  CAS  PubMed  Google Scholar 

  3. Li, F., Han, X., and Liu, S., Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode, Biosens. Bioelectron, 2011, vol. 26, p. 2619.

    Article  CAS  PubMed  Google Scholar 

  4. Ye, W., Yan, J., Ye, Q., and Zhou, F., Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications, J. Phys. Chem. C, 2010, vol. 114, p. 15617.

    Article  CAS  Google Scholar 

  5. Xu, X., Jia, J., Yang, X., and Dong, S., A templateless, surfactantless, simple electrochemical route to a dendritic gold nanostructure and its application to oxygen reduction, Langmuir, 2010, vol. 26, p. 7627.

    Article  CAS  PubMed  Google Scholar 

  6. Huang, T., Meng, F., and Qi, L., Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin, Langmuir, 2009, vol. 26, p. 7582.

    Article  CAS  Google Scholar 

  7. Zhou, D.L., Wang, R.Z., Zhang, M., Weng, X., Chen, J.R., Wang, A.J., and Feng, J.J., Iron(III) ionsupported electrosynthesis of urchin-like gold arrays, Electrochim. Acta, 2013, vol. 108, p.390.

    Article  CAS  Google Scholar 

  8. Guo, S. and Wang, E., Synthesis and electrochemical applications of gold nanoparticles, Anal. Chim. Acta, 2007, vol. 598, p.181.

    Article  CAS  PubMed  Google Scholar 

  9. Khoury, C.G. and Vo-Dinh, T., Gold nanostars for surface-enhanced Raman scattering: Synthesis, characterization and optimization, J. Phys. Chem. C, 2008, vol. 112, p. 18849.

    Article  CAS  Google Scholar 

  10. Jana, N.R., Gearheart, L., and Murphy, C.J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, J. Phys. Chem. B, 2001, vol. 105, p. 4065.

    Article  CAS  Google Scholar 

  11. Das, A.K. and Raj, C.R., Rapid room temperature synthesis of electro catalytically active Au nanostructures, J. Colloid Interface. Sci., 2011, vol. 353, p.506.

    Article  CAS  PubMed  Google Scholar 

  12. Jena, B.K. and Raj, C.R., Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity, J. Phys. Chem. C, 2007, vol. 111, p. 15146.

    Article  CAS  Google Scholar 

  13. Jena, B.K. and Raj, C.R., Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen, Langmuir, 2007, vol. 23, p. 4064.

    Article  CAS  PubMed  Google Scholar 

  14. Vasilev, K., Zhu, T., Wilms, M., Gillies, G., Lieberwirth, I., Mittler, S., Knoll, W., and Kreiter, M., Simple, one-step synthesis of gold nanowires in aqueous solution, Langmuir, 2005, vol. 21, p. 12399.

    Article  CAS  PubMed  Google Scholar 

  15. Huang, C.J., Wang, Y.H., Chiu, P.H., Shih, M.C., and Meen, T.H., Electrochemical synthesis of gold nanocubes, Mater. Lett., 2006, vol. 60, p. 1896.

    Article  CAS  Google Scholar 

  16. Chen, S., Wang, Z.L., Ballato, J., Foulger, S.H., and Carroll, D.L., Monopod, bipod, tripod and tetrapod gold nanocrystals, J. Am. Chem. Soc., 2003, vol. 125, p. 16186.

    Article  CAS  PubMed  Google Scholar 

  17. Li, C., Shuford, K.L., Chen, M., Je Lee, E., and Cho, S.O., A facile polyol route to uniform gold octahedra with tailorable size and their optical properties, ACS Nano, 2008, vol. 2, p. 1760.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, H.L., Chen, C.H., and Huang, M.H., Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal Bi pyramids and the formation of gold nanostars, Chem. Mater., 2009, vol. 21, p.110.

    Article  CAS  Google Scholar 

  19. Seo, B., Choi, S., and Kim, J., Simple electrochemical deposition of Au nanoplates from Au(I) cyanide complexes and their electrocatalytic activities, ACS Appl. Mater. Interfaces, 2011, vol. 3, p.441.

    Article  CAS  PubMed  Google Scholar 

  20. Qin, Y., Song, Y., Sun, N., Zhao, N., Li, M., and Qi, L., Ionic liquid-assisted growth of single-crystalline dendritic gold nanostructures with a three-fold symmetry, Chem. Mater., 2008, vol. 20, p. 3965.

    Article  CAS  Google Scholar 

  21. Das, A.K. and Raj, C.R., Iodide-mediated reduction of AuCl4 and a new green route for the synthesis of single crystalline Au nanostructures with pronounced electrocatalytic activity, J. Phys. Chem. C, 2011, vol. 115, p. 21041.

    Article  CAS  Google Scholar 

  22. Lu, G., Li, C., and Shi, G., Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced Raman scattering, Chem. Mater., 2007, vol. 19, p. 3433.

    Article  CAS  Google Scholar 

  23. Duan, G., Cai, W., Luo, Y., Li, Z., and Lei, Y., Electrochemically induced flowerlike gold nanoarchitectures and their strong surface-enhanced Raman scattering effect, Appl. Phys. Lett., 2006, vol. 89, p. 211905.

    Article  CAS  Google Scholar 

  24. Li, Y. and Shi, G., Electrochemical growth of twodimensional gold nanostructures on a thin polypyrrole film modified ITO electrode, J. Phys. Chem. B, 2005, vol. 109, p. 23787.

    Article  CAS  PubMed  Google Scholar 

  25. Praig, V.G., Piret, G., Manesse, M., Castel, X., Boukherroub, R., and Szunerits, S., Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films, Electrochim. Acta, 2008, vol. 53, p. 7838.

    Article  CAS  Google Scholar 

  26. Guo, S., Wang, L., and Wang, E., Templateless, surfactantless, simple electrochemical route to rapid synthesis of diameter-controlled 3D flowerlike gold microstructure with “clean” surface, Chem. Commun., 2007, vol. 30, p. 3163.

    Article  CAS  Google Scholar 

  27. Yang, Y.C., Huang, T.K., Chen, Y.L., Mevellec, J.Y., Lefrant, S., Lee, C.Y., and Chiu, H.T., Electrochemical growth of gold nanostructures for surface-enhanced Raman scattering, J. Phys. Chem. C, 2011, vol. 115, p. 1932.

    Article  CAS  Google Scholar 

  28. Wang, J., Duan, G., Liu, G., Li, Y., Dai, Z., Zhang, H., and Cai, W., Gold quasi rod-shaped nanoparticle-built hierarchically micro/nanostructured pore array via clean electrodeposition on a colloidal monolayer and its structurally enhanced SERS performance, J. Mater. Chem., 2011, vol. 21, p. 8816.

    Article  CAS  Google Scholar 

  29. Chen, H., Kannan, P., Guo, L., Chen, H., and Kim, D.H., Direct growth of highly branched crystalline Au nanostructures on an electrode surface: their surface enhanced Raman scattering and electrocatalytic applications, J. Mater. Chem., 2011, vol. 21, p. 18271.

    Article  CAS  Google Scholar 

  30. Huang, C.J., Chiu, P.H., Wang, Y.H., Chen, W.R., and Mee, T.H., Synthesis of the gold nanocubes by electrochemical technique, J. Electrochem. Soc., 2006, vol. 153, p. D129.

    Article  CAS  Google Scholar 

  31. Yu, Y.Y., Chang, S.S., Lee, C.L., and Wang, C.R.C., Gold nanorods: Electrochemical synthesis and optical properties, J. Phys. Chem. B, 1997, vol. 101, p. 6661.

    Article  CAS  Google Scholar 

  32. Huan, T.N., Ganesh, T., Kim, K.S., Kim, S., Han, S.H., and Chung, H., A three-dimensional gold nanodendrite network porous structure and its application for an electrochemical sensing, Biosens. Bioelectron, 2011, vol. 27, p.183.

    Article  CAS  PubMed  Google Scholar 

  33. O’Mullane, A.P., Ippolito, S.J., Sabri, Y.M., Bansal, V., and Bhargava, K., Premonolayer oxidation of nanostructured gold: An important factor influencing electrocatalytic activity, Langmuir, 2009, vol. 25, p. 3845.

    Article  CAS  PubMed  Google Scholar 

  34. Lin, T.H., Lin, C.W., Liu, H.H., Sheu, J.T., and Hung, W.H., Potential-controlled electrodeposition of gold dendrites in the presence of cysteine, Chem. Commun., 2011, vol. 47, p. 2044.

    Article  CAS  Google Scholar 

  35. Feng, J.J., Li, A.Q., Lei, Z., and Wang, A.J., Lowpotential synthesis of “Clean” Au nanodendrites and their high performance toward ethanol oxidation, ACS Appl. Mater. Interfaces, 2012, vol. 4, p. 2570.

    Article  CAS  PubMed  Google Scholar 

  36. Feng, J.J., Lv, Z.Y., Qin, S.F., Li, A.Q., Fei, Y., and Wang, A.J., N-methylimidazole-assisted electrodeposition of Au porous textile-like sheet arrays and its application to electrocatalysis, Electrochim. Acta, 2013, vol. 102, p.312.

    Article  CAS  Google Scholar 

  37. Lv, Z.Y., Li, A.Q., Fei, Y., Li, Z., Chen, J.R., Wang, A.J., and Feng, J.J., Facile and controlled electrochemical route to three-dimensional hierarchical dendritic gold nanostructures, Electrochim. Acta, 2013, vol. 109, p.136.

    Article  CAS  Google Scholar 

  38. Zhou, D.L., Wang, R.Z., Zhang, M., Weng, X., Chen, J.R., Wang, A.J., and Feng, J.J., Iron(III) ionsupported electrosynthesis of urchin-like gold arrays, Electrochim. Acta, 2013, vol. 108, p.390.

    Article  CAS  Google Scholar 

  39. Shiigi, H., Yamamoto, Y., Yoshi, N., Nakao, H., and Nagaoka, T., One-step preparation of positivelycharged gold nanoraspberry, Chem. Commun. 2006, vol. 41, p. 4288.

    Article  CAS  Google Scholar 

  40. Manivannan, S. and Ramaraj, R., Electrodeposited nanostructured raspberry-like gold-modified electrodes for electrocatalytic applications, J. Nanopart. Res., 2013, vol. 15, p.1.

    Article  CAS  Google Scholar 

  41. Takamura, T., Encyclopedia of Electrochemical Power Sources, 1st ed., Elsevier, 2010.

    Google Scholar 

  42. Cheng, T.M., Huang, T.K., Lin, H.K., Tung, S.P., Chen, Y.L., Lee, C.Y., and Chiu, H.T., (110)-Exposed gold nanocoral electrode as low onset potential selective glucose sensor, ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 2773.

    Article  CAS  PubMed  Google Scholar 

  43. Ye, W., Kou, H., Liu, Q., Yan, J., Zhou, F., and Wang, C., Electrochemical deposition of Au–Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation, Int. J. Hydrogen Energy, 2012, vol. 37, p. 4088.

    Article  CAS  Google Scholar 

  44. Ma, Y., Di, J., Yan, X., Zhao, M., Lu, Z., and Tu, Y., Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application, Biosens. Bioelectron, 2009, vol. 24, p. 1480.

    Article  CAS  PubMed  Google Scholar 

  45. Ye, W.C., Yan, J.F., Ye, Q., and Zhou, F., Templatefree and direct electrochemical deposition of hierarchical dendritic gold microstructures: Growth and their multiple applications, J. Phys. Chem. C, 2010, vol. 114, p. 15617.

    Article  CAS  Google Scholar 

  46. Hu, Y., Jin, J., Wu, P., Zhang, H., and Cai, C., Graphene-gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation, Electrochim. Acta, 2010, vol. 56, p. 491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadhassan Motaghedifard.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 8, pp. 723–730.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motaghedifard, M., Behpour, M. & Amani, A.M. Electrochemical Growth of Sponge/Raspberry-Like Gold Nanoclusters at the Carbon Rod. Russ J Electrochem 54, 629–635 (2018). https://doi.org/10.1134/S1023193518080037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518080037

Keywords

Navigation