Skip to main content
Log in

Ultrathin carbon-coated Sb2Se3 nanorods embedded in 3D hierarchical carbon matrix as binder-free anode for high-performance sodium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A high-performance freestanding anode composed of carbon-coated Sb2Se3 nanorods and conductive carbon matrix of reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) for sodium-ion batteries (SIBs) is fabricated by a modified vacuum filtration, subsequent free-drying, and annealing. In this electrode architecture, the ultrathin amorphous carbon layers connect Sb2Se3 nanorods with the 3D interconnected carbon matrix. This unique cross-bonding network structure with good electrical conductivity and volume buffering effect improves the structural stability during repeating Na+ insertion/extraction and electrochemical performance. As a binder-free anode for SIBs, it reveals preferable initial charge-specific capacity of 792 mA h g−1 at a current density of 100 mA g−1, and simultaneously sustains 100 cycles at 500 mA g−1 with a specific capacity of 485 mA h g−1, and capacity retention ratio of 90%. The flexible Sb2Se3-based material as an anode can expectantly apply to the further development of advanced low-cost and flexible electronics for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough JB (2012) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46:1053–1061

    Article  CAS  PubMed  Google Scholar 

  3. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954

    Article  CAS  Google Scholar 

  4. Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607

    Article  CAS  Google Scholar 

  5. Tarascon J-M, Armand M (2011) Issues and challenges facing rechargeable lithium batteries. In: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Sci 171–179. https://doi.org/10.1142/9789814317665_0024

  6. Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  7. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  PubMed  Google Scholar 

  8. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901

    Article  CAS  Google Scholar 

  9. Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033

    Article  CAS  PubMed  Google Scholar 

  10. Hou H, Banks CE, Jing M, Zhang Y, Ji X (2015) Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater 27:7861–7866

    Article  CAS  PubMed  Google Scholar 

  11. Xu GL, Chen Z, Zhong GM, Liu Y, Yang Y, Ma T, Ren Y, Zuo X, Wu XH, Zhang X, Amine K (2016) Nanostructured black phosphorus/Ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett 16:3955–3965

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Xie J, Zhang S, Zhu P, Cao G, Zhao X (2015) Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries. Electrochim Acta 151:8–15

    Article  CAS  Google Scholar 

  13. Senguttuvan P, Rousse G, Seznec V, Tarascon J-M, Palacín MR (2011) Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem Mater 23:4109–4111

    Article  CAS  Google Scholar 

  14. Xu GB, Yang LW, Wei XL, Ding JW, Zhong JX, Chu PK (2016) Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi 2 (PO 4 ) 3 nanocrystals for high-performance sodium electrodes. J Power Sources 327:580–590

    Article  CAS  Google Scholar 

  15. Wu Y, Liu Z, Zhong X, Cheng X, Fan Z, Yu Y (2018) Amorphous red phosphorus embedded in sandwiched porous carbon enabling superior sodium storage performances. Small 14:1703472

    Article  CAS  Google Scholar 

  16. Luo W, Zhang P, Wang X, Li Q, Dong Y, Hua J, Zhou L, Mai L (2016) Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. J Power Sources 304:340–345

    Article  CAS  Google Scholar 

  17. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L (2012) Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc 134:20805–20811

    Article  CAS  PubMed  Google Scholar 

  18. Qian J, Chen Y, Wu L, Cao Y, Ai X, Yang H (2012) High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem Commun 48:7070–7072

    Article  CAS  Google Scholar 

  19. Baggetto L, Ganesh P, Sun C-N, Meisner RA, Zawodzinski TA, Veith GM (2013) Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 1:7985–7994

    Article  CAS  Google Scholar 

  20. Zhou X, Zhong Y, Yang M, Hu M, Wei J, Zhou Z (2014) Sb Nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem Commun 50:12888–12891

    Article  CAS  Google Scholar 

  21. Deng M, Li S, Hong W, Jiang Y, Xu W, Shuai H, Zou G, Hu Y, Hou H, Wang W, Ji X (2019) Octahedral Sb2O3 as high-performance anode for lithium and sodium storage. Mater Chem Phys 223:46–52

    Article  CAS  Google Scholar 

  22. Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) Carbon-coated Sb 2 Se 3 composite as anode material for sodium ion batteries. Electrochem Commun 60:74–77

    Article  CAS  Google Scholar 

  23. Zhao W, Li CM (2017) Mesh-structured N-doped graphene@Sb 2 Se 3 hybrids as an anode for large capacity sodium-ion batteries. J Colloid Interface Sci 488:356–364

    Article  CAS  PubMed  Google Scholar 

  24. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci U S A 104:13574–13577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y (2017) Paper-based electrodes for flexible energy storage devices. Adv Sci 4:1700107

    Article  CAS  Google Scholar 

  26. Wen L, Li F, Cheng HM (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28:4306–4337

    Article  CAS  PubMed  Google Scholar 

  27. Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47:2970–2975

    Article  CAS  Google Scholar 

  28. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  CAS  Google Scholar 

  29. Chen G, Wang W, Wang C, Ding T, Yang Q (2015) Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv Sci 2:1500109

    Article  CAS  Google Scholar 

  30. Wang J, Deng Z, Li Y (2002) Synthesis and characterization of Sb2Se3 nanorods. Mater Res Bull 37:495–502

    Article  CAS  Google Scholar 

  31. Zhang H-B, Lin G-D, Zhou Z-H, Dong X, Chen T (2002) Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system. Carbon 40:2429–2436

    Article  CAS  Google Scholar 

  32. Kastner J, Pichler T, Kuzmany H, Curran S, Blau W, Weldon D, Delamesiere M, Draper S, Zandbergen H (1994) Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem Phys Lett 221:53–58

    Article  CAS  Google Scholar 

  33. Petkov K, Vassilev G, Todorov R, Tasseva J, Vassilev V (2011) Optical properties and structure of thin films from the system GeSe2–Sb2Se3–AgI. J Non-Cryst Solids 357:2669–2674

    Article  CAS  Google Scholar 

  34. Ma J, Wang Y, Wang Y, Peng P, Lian J, Duan X, Liu Z, Liu X, Chen Q, Kim T, Yao G, Zheng W (2011) One-dimensional Sb2Se3 nanostructures: solvothermal synthesis, growth mechanism, optical and electrochemical properties. CrystEngComm 13:2369–2374

    Article  CAS  Google Scholar 

  35. Thakur A, Kumar S, Rangra VS (2015) Synthesis of reduced graphene oxide (rGO) via chemical reduction. AIP Conf Proc 1661:080032

    Article  CAS  Google Scholar 

  36. Maruyama T, Katoh S, Nakajima M, Nabetani H, Abbott TP, Shono A, Satoh K (2001) FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. J Membr Sci 192:201–207

    Article  CAS  Google Scholar 

  37. Ou X, Yang C, Xiong X, Zheng F, Pan Q, Jin C, Liu M, Huang K (2017) A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv Funct Mater 27:1606242

    Article  CAS  Google Scholar 

  38. Ma X, Luo W, Yan M, He L, Mai L (2016) In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 24:165–188

    Article  CAS  Google Scholar 

  39. Xie D, Xia X, Zhong Y, Wang Y, Wang D, Wang X, Tu J (2017) Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv Energy Mater 7:1601804

    Article  CAS  Google Scholar 

  40. Peng HJ, Hou TZ, Zhang Q, Huang JQ, Cheng XB, Guo MQ, Yuan Z, He LY, Wei F (2014) Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Adv Mater Interfaces 1:1400227

    Article  CAS  Google Scholar 

  41. Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877

    Article  CAS  Google Scholar 

  42. Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XW (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217

    Article  CAS  Google Scholar 

  43. Ge P, Li S, Xu L, Zou K, Gao X, Cao X, Zou G, Hou H, Ji X (2019) Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage. Adv Energy Mater 9:1803035

    Article  CAS  Google Scholar 

  44. Liu X, Xu G, Xiao H, Wei X, Yang L (2017) Free-standing hierarchical porous assemblies of commercial TiO 2 nanocrystals and multi-walled carbon nanotubes as high-performance anode materials for sodium ion batteries. Electrochim Acta 236:33–42

    Article  CAS  Google Scholar 

  45. Yang H, Xu G, Wei X, Cao J, Yang L, Chu PK (2018) Ultrafast hetero-assembly of monolithic interwoven V2O5 nanobelts/carbon nanotubes architectures for high-energy alkali-ion batteries. J Power Sources 395:295–304

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the grants from the National Natural Science Foundation of China (No. 11474242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobao Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wu, J., Liu, X. et al. Ultrathin carbon-coated Sb2Se3 nanorods embedded in 3D hierarchical carbon matrix as binder-free anode for high-performance sodium-ion batteries. Ionics 25, 3737–3747 (2019). https://doi.org/10.1007/s11581-019-02961-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02961-2

Keywords

Navigation