Skip to main content
Log in

Electrical Conductivity, Thermal Expansion and Electrochemical Properties of Perovskites PrBaFe2–xNi x O5 + δ

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In order to evaluate applicability of mixed-conducting PrBaFe2–xNi x О5 + δ perovskites for cathodes of solid oxide fuel cells (SOFCs), their crystal structure, thermal and chemical expansion, electrical conductivity and electrochemical behavior were studied. The solubility limit of nickel in PrBaFe2O5 + δ corresponds to x = 0.8. At x > 0.2, the disordered cubic phase transformed into the tetragonal phase. The maximum level of conductivity (50–120 S/cm) at the operating temperatures of SOFC was found for the composition with the maximum nickel content, PrBaFe1.2Ni0.8О5 + δ. This material is also characterized by moderate thermal and chemical expansion relative to other ferrite-nickelates. The polarization resistance of a porous PrBaFe1.2Ni0.8О5 + δ cathode in a cell with a protective Ce0.6La0.4O2–δ layer and a solid electrolyte (La0.9Sr0.1)0.98Ga0.8Mg0.2O3–δ was ~0.9 Ohm cm2 at a temperature of 1073 K, atmospheric oxygen pressure, and current density of–120 mA cm–2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarancon, A., Burriel, M., Santiso, J., Skinner, S.J., and Kilner, J.A., Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells, J. Mater. Chem., 2010, vol. 20, p. 3799.

    Article  CAS  Google Scholar 

  2. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. III. Recent trends and selected methodological aspects, J. Solid State Electrochem., 2011, vol. 15, p. 1007.

    Article  CAS  Google Scholar 

  3. Kim, J.H., Cassidy, M., Irvine, J.T.S., and Bae, J., Electrochemical investigation of composite cathodes with SmBa0.5Sr0.5Co2O5 + δ cathodes for intermediate temperature-operating solid oxide fuel cell, Chem. Mater., 2010, vol. 22, p. 883.

    Article  CAS  Google Scholar 

  4. Zhang, K., Ge, L., Ran, R., Shao, Z., and Liu, S., Synthesis, characterization and evaluation of cationordered LnBaCo2O5 + δ as materials of oxygen permeation membranes and cathodes of SOFCs, Acta Mater., 2008, vol. 56, p. 4876.

    Article  CAS  Google Scholar 

  5. Tsvetkov, D.S., Ivanov, I.L., Malyshkin, D.A., and Zuev, A.Yu., Oxygen content, crystal structure and chemical expansion of the double perovskites PrBaCo2 †xFexO6 †δ, Dalton Trans., 2014, vol. 43, p. 11862.

    Article  CAS  PubMed  Google Scholar 

  6. Istomin, S.Ya. and Antipov, E.V., Katodnye materialy na osnove perovskitopodobnykh oksidov perekhodnykh metallov dlya srednetemperaturnykh tverdooksidnykh toplivnykh elementov, Usp. Khim., 2013, vol. 82, p. 686.

    Article  CAS  Google Scholar 

  7. Maignan, A., Martin, C., Pelloquin, D., Nguyen, N., and Raveau, B., Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5 + δ, closely related to the “112” structure, J. Solid State Chem., 1999, vol. 142, p. 247.

    Article  CAS  Google Scholar 

  8. Taskin, A.A., Lavrov, A.N., and Ando, Y., Transport and magnetic properties of GdBaCo2O5 + x single crystals: A cobalt oxide with square-lattice CoO2 planes over a wide range of electron and hole doping, Phys. Rev. B, 2005, vol. 71, p. 134414.

    Article  CAS  Google Scholar 

  9. King, G. and Woodward, P.M., Cation ordering in perovskites, J. Mater. Chem., 2010, vol. 20, p. 5785.

    Article  CAS  Google Scholar 

  10. Tsvetkov, D.S., Ivanov, I.L., and Zuev, A.Yu., Crystal structure and oxygen content of the double perovskites GdBaCo2 †xFexO6 †δ, J. Solid State Chem., 2013, vol. 199, p. 154.

    Article  CAS  Google Scholar 

  11. Kim, G., Wang, S., Jacobson, A.J., Yuan, Z., Donner, W., Chen, C.L., Reimus, L., Brodersen, P., and Mims, C.A., Oxygen exchange kinetics of epitaxial PrBaCo2O5 + δ thin films, Appl. Phys. Lett., 2006, vol. 88, p. 024103.

    Article  CAS  Google Scholar 

  12. Enriquez, E., Xu, X., Bao, Sh., Harrell, Z., Chen, Ch., Choi, S., Jun, A., Kim, G., and Whangbo, M.-H., Catalytic dynamics and oxygen diffusion in doped PrBaCo2O5.5 + δ thin films, Appl. Mater. Interfaces, 2015, vol. 7, p. 24353.

    Article  CAS  Google Scholar 

  13. Fu, D., Jin, F., and He, T., A-site calcium-doped Pr1‒xCaxBaCo2O5 + δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells, J. Power Sources, 2016, vol. 313, p. 134.

    Article  CAS  Google Scholar 

  14. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., 1976, vol. A32, p. 751.

    Article  CAS  Google Scholar 

  15. Suntsov, A.Yu., Leonidov, I.A., Patrakeev, M.V., and Kozhevnikov, V.L., Defect equilibrium in PrBaCo2O5 + δ at elevated temperatures, J. Solid State Chem., 2013, vol. 206, p. 99.

    Article  CAS  Google Scholar 

  16. Zuev, A.Yu., Petrov, A.N., Vylkov, A.I., and Tsvetkov, D.S., Oxygen nonstoichiometry and defect structure of undoped and doped lanthanum cobaltites, J. Mater Sci., 2007, vol. 42, p. 1901.

    Article  CAS  Google Scholar 

  17. Aksenova, T.V., Gavrilova, L.Ya., Yaremchenko, A.A., Cherepanov, V.A., and Kharton, V.V., Oxygen nonstoichiometry, thermal expansion and high-temperature electrical properties of layered NdBaCo2O5 + δ and SmBaCo2O5 + δ, Mater. Res. Bull., 2010, vol. 45, p. 1288.

    Article  CAS  Google Scholar 

  18. Volkova, N.E., Kolotygin, V.A., Gavrilova, L.Ya., Kharton, V.V., and Cherepanov, V.A., Nonstoichiometry, thermal expansion and oxygen permeability of SmBaCo2 − xCuxO6 − δ, Solid State Ionics, 2014, vol. 260, p. 15.

    Article  CAS  Google Scholar 

  19. Kim, J.H., Kim, Y., Connor, P.A., Irvine, J.T.S., Bae, J., and Zhou, W., Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5 + δ, a potential cathode material for intermediate-temperature solid oxide fuel cells, J. Power Sources, 2009, vol. 194, p. 704.

    Article  CAS  Google Scholar 

  20. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review II. Electrochemical behavior vs. materials science aspects, J. Solid State Electrochem., 2008, vol. 12, p. 1367.

    Article  CAS  Google Scholar 

  21. Spotorno, R., Piccardo, P., Costa, R., Han, F., and Schiller, G., LaNi0.6Fe0.4O3 as cathode contacting material: Effect on anode supported cell performances, ECS Trans., 2017, vol. 78, p. 1689.

    Article  CAS  Google Scholar 

  22. Ortiz-Vitoriano, N., Larramendi, I.R., Cook, S.N., Burriel, M., Aguadero, A., Kilner, J.A., and Rojo, T., The formation of performance enhancing pseudocomposites in the highly active La1 †xCaxFe0.8Ni0.2O3 system for IT-SOFC application, Adv. Funct. Mater., 2013, vol. 23, p. 5131.

    Article  CAS  Google Scholar 

  23. Yang, G., Su, Ch., Chen, Y., Tadé, M.O., and Shao, Z., Nano La0.6Ca0.4Fe0.8Ni0.2O3 †δ decorated porous doped ceria as a novel cobalt-free electrode for “symmetrical” solid oxide fuel cells, J. Mater. Chem. A., 2014, vol. 2, p. 19526.

    Article  CAS  Google Scholar 

  24. Chen, Y., Cheng, Zh., Yang, Y., Gu, Q., Tian, D., Lu, X., Yu, W., and Lin, B., Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance, J. Power Sources, 2016, vol. 310, p. 109.

    Article  CAS  Google Scholar 

  25. Trukhanov, S.V., Troyanchuk, I.O., Hervieu, M., Szymczak, H., and Barner, K., Magnetic and electrical properties of LBaMn2O6 †γ (L = Pr, Nd, Sm, Eu, Gd, Tb) manganites, Phys. Rev. B, 2002, vol. 66, p. 184424.

    Google Scholar 

  26. Karppinen, M., Okamoto, H., Fjellvag, H., Motohashi, T., and Yamauchi, H., Oxygen and cation ordered perovskite, Ba2Y2Mn4O11, J. Solid State Chem., 2004, vol. 177, p. 2122.

    Article  CAS  Google Scholar 

  27. Chen, D., Wang, F., Shi, H., Ran, R., and Shao, Z., Systematic evaluation of Co-free LnBaFe2O5 + δ (Ln = Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells, Electrochim. Acta, 2012, vol. 78, p. 466.

    Article  CAS  Google Scholar 

  28. Kharton, V.V., Kovalevsky, A.V., Patrakeev, M.V., Tsipis, E.V., Viskup, A.P., Kolotygin, V.A., Yaremchenko, A.A., Shaula, A.L., Kiselev, E.A., and Waerenborgh, J.C., Oxygen nonstoichiometry, mixed conductivity, and Mössbauer spectra of Ln0.5A0.5FeO3 †δ (Ln = La–Sm, A = Sr, Ba): Effects of cation size, Chem. Mater., 2008, vol. 20, p. 6457.

    Article  CAS  Google Scholar 

  29. Patil, K.C., Hegde, M.S., Rattan, T., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, New Jersey: World Scientific, 2008.

    Book  Google Scholar 

  30. Proskurnina, N.V., Voronina, V.I., Cherepanov, V.A., and Kiselev, E.A., Phase equilibria and crystal structure of the solid solution LaFe1 †xNixO3 †δ (0 ≤ x ≤ 1), Prog. Solid State Chem., 2007, vol. 35, p. 233.

    Article  CAS  Google Scholar 

  31. Tsipis, E.V., Kiselev, E.A., Kolotygin, V.A., Waerenborgh, J.C., Cherepanov, V.A., and Kharton, V.V., Mixed conductivity, Mössbauer spectra and thermal expansion of (La,Sr)(Fe,Ni)O3 − δ perovskites, Solid State Ionics, 2008, vol. 179, p. 2170.

    CAS  Google Scholar 

  32. Hashimoto, S., Kammer, K., Larsen, P.H., Poulsen, F.W., and Mogensen, M., A study of Pr0.7Sr0.3Fe1 – xNixO3 †δ as a cathode material for SOFCs with intermediate operating temperature, Solid State Ionics, 2005, vol. 176, p. 1013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ivanov.

Additional information

Original Russian Text © A.I. Ivanov, V.A. Kolotygin, E.V. Tsipis, S.I. Bredikhin, V.V. Kharton, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 6, pp. 615–622.

Presented at the IV All-Russian Conference “Fuel Cells and Fuel Cell based Power Plants” (with international participation) June 25‒29, 2017, Suzdal, Vladimir region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.I., Kolotygin, V.A., Tsipis, E.V. et al. Electrical Conductivity, Thermal Expansion and Electrochemical Properties of Perovskites PrBaFe2–xNi x O5 + δ. Russ J Electrochem 54, 533–540 (2018). https://doi.org/10.1134/S102319351806006X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351806006X

Keywords

Navigation