Skip to main content
Log in

Stability, mixed conductivity, and thermomechanical properties of perovskite materials for fuel cell electrodes based on La0.5A0.5Mn0.5Ti0.5O3–δ, La0.5Ba0.5Ti0.5Fe0.5O3–δ, and (La0.5А0.5)0.95Cr0.5Fe0.5O3–δ (A = Ca, Ba)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

For materials based on ferrites and manganites with Са2+ and Ва2+ cations substituted into А sublattice, the functional properties are studied and the prospects as electrode materials for solid-oxide fuel cells are assessed. The electronic conductivity of materials based on La0.5A0.5Mn0.5Ti0.5O3–δ is shown to decrease with the increase in the ionic radius of alkali-earth substituent; however, for La0.5Ва0.5Mn0.5Ti0.5O3–δ and La0.5Ва0.5Fe0.5Ti0.5O3–δ, the appearance of n-conduction is observed during reduction, which may provide adequate conductivity under anodic conditions. Under the conditions of fuel cell operation, the thermal expansion coefficients of these materials are (13.0–13.5) × 10–6 K–1. The thermal and chemical expansion increases with the increase in the radius of alkali-earth cation; the latter value does not exceed 0.2%, which is acceptable for preparation of electronic layers. The transition of oxygen through membranes based on materials studied is determined to the large extent by the kinetics of surface exchange which depends on the rate of delivery of oxygen vacancies to the surface. Doping of ferrites with chromium or titanium decreases the electronic and ionic conductivity; however, the presence of substituents in В sublattice makes it possible to stabilize the perovskite phase in a wide range of р2), decrease the thermal and chemical expansion, and prevent to the large extent the ordering of oxygen vacancies, which allows one to consider these materials as the candidates for electrodes in symmetrical solid-oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruiz-Morales, J.C., Marrero-Lopes, D., Canales-Vazquez, J., and Irvine, J.T.S., RSC Adv., 2011, vol. 1, p. 1403.

    Article  CAS  Google Scholar 

  2. Kharton, V.V., Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes, Weinheim: Wiley-VCH, 2011.

    Book  Google Scholar 

  3. Zhang, P., Guan, G., Khaerudini, D.S., Hao, X., Xue, C., Han, M., Kasai, Y., and Abudula, A., J.Power Sources, 2015, vol. 276, p. 347.

    Article  CAS  Google Scholar 

  4. El Himri, A., Marrero-Lopez, D., Ruiz-Morales, J.C., Pena-Martinez, J., and Nunez, P., J.Power Sources, 2009, vol. 188, p. 230.

    Article  Google Scholar 

  5. Goodenough, J.B. and Huang, Y.B., J.Power Sources, 2007, vol. 173, p. 1.

    Article  CAS  Google Scholar 

  6. Jiang, S.P. and Chan, S.H., J.Mater. Sci., 2004, vol. 39, p. 4405.

    Article  CAS  Google Scholar 

  7. Tao, S. and Irvine, J.T.S., J.Electrochem. Soc., 2004, vol. 151, p. A252.

    Article  Google Scholar 

  8. Kharton, V.V., Tsipis, E.V., Marozau, I.P., Viskup, A.P., Frade, J.R., and Irvine, J.T.S., Solid State Ionics, 2007, vol. 178, p. 101.

    Article  CAS  Google Scholar 

  9. Delahaye, T., Jardiel, T., Joubert, O., Laucournet, R., Gauthier, G., and Caldes, M.T., Solid State Ionics, 2011, vol. 184, p. 39.

    Article  CAS  Google Scholar 

  10. Kolotygin, V.A., Tsipis, E.V., Shaula, A.L., Naumovich, E.N., Frade, J.R., Bredikhin, S.I., and Kharton, V.V., J.Solid-State Electrochem., 2011, vol. 15, p. 313.

    Article  CAS  Google Scholar 

  11. Jiang, S.P., Zhang, L., and Zhang, Y., J.Mater. Chem., 2007, vol. 17, p. 2627.

    Article  CAS  Google Scholar 

  12. Pena-Martinez, J., Marrero-Lopez, D., Perez-Coll, D., Ruiz-Morales, J.C., and Nunez, P., Electrochim. Acta, 2007, vol. 52, p. 2950.

    Article  CAS  Google Scholar 

  13. Zhang, L., Chen, X.B., Jiang, S.P., He, H.Q., and Xiang, Y., Solid State Ionics, 2009, vol. 180, p. 1076.

    Article  CAS  Google Scholar 

  14. Lu, M.F., Tsipis, E.V., Waerenborgh, J.C., Yaremchenko, A.A., Kolotygin, V.A., Bredikhin, S.I., and Kharton, V.V., J.Power Sources, 2012, vol. 206, p. 59.

    Article  Google Scholar 

  15. Chen, M., Paulson, S., Thangadurai, V., and Birss, V., J.Power Sources, 2013, vol. 236, p. 68.

    Article  CAS  Google Scholar 

  16. Canales-Vazquez, J., Ruiz-Morales, J.C., Marrero-Lopez, D., Pena-Martinez, J., Nunes, P., and Gomez-Romero, P., J.Power Sources, 2007, vol. 171, p. 552.

    Article  CAS  Google Scholar 

  17. Ruiz-Morales, J.C., Canales-Vazquez, J., Lincke, H., Pena-Martinez, J., Marrero-Lopez, D., Perez-Coll, D., Irvine, J.T.S., and Nunez, P., Boll. Soc. Esp. Ceram. Vidrio, 2008, vol. 47, p. 183.

    Article  CAS  Google Scholar 

  18. Zheng, Y., Zhang, C., Ran, R., Cai, R., Shao, Z., and Farrusseng, D., Acta Mater., 2009, vol. 57, p. 1165.

    Article  CAS  Google Scholar 

  19. Fernandez-Ropero, A.J., Porras-Vazquez, J.M., Cabeza, A., Slater, P.R., Marrero-Lopez, D., and Losilla, E.R., J.Power Sources, 2014, vol. 249, p. 405.

    Article  CAS  Google Scholar 

  20. Meng, X., Liu, X., Han, D., Wu, H., Li, J., and Zhan, Z., J.Power Sources, 2014, vol. 252, p. 58.

    Article  CAS  Google Scholar 

  21. Zhou, J., Chen, G., Wu, K., and Cheng, Y., J.Power Sources, 2014, vol. 270, p. 418.

    Article  CAS  Google Scholar 

  22. Kolotygin, V.A., Tsipis, E.V., Ivanov, A.I., Fedotov, Y.S., Burmistrov, I.N., Agarkov, D.A., Sinitsyn, V.V., Bredikhin, S.I., and Kharton, V.V., J.Solid-State Electrochem., 2012, vol. 16, p. 2335.

    Article  CAS  Google Scholar 

  23. Ivanov, A.I., Agarkov, D.A., Burmistrov, I.N., Kudrenko, E.A., Bredikhin, S.I., and Kharton, V.V., Russ. J. Electrochem., 2014, vol. 50, p. 730.

    Article  CAS  Google Scholar 

  24. Fu, Q.X., Tietz, F., and Stover, D., J.Electrochem. Soc., 2006, vol. 153, p. 74.

    Article  Google Scholar 

  25. Corre, G., Kim, G., Cassidy, M., Vohs, J.M., Gorte, R.J., and Irvine, J.T.S., Chem. Mater., 2009, vol. 21, p. 1077.

    Article  CAS  Google Scholar 

  26. Tao, S. and Irvine, J.T.S., Chem. Mater., 2004, vol. 16, p. 4116.

    Article  CAS  Google Scholar 

  27. Kozhevnikov, V.L., Leonidov, I.A., Bahteeva, J.A., Patrakeev, M.V., Mitberg, E.B., and Poeppelmeier, K.R., Chem. Mater., 2004, vol. 16, p. 5014.

    Article  CAS  Google Scholar 

  28. Haag, J.M., Barnett, S.A., Richardson, Jr.J.W., and Poeppelmeier, K.R., Chem. Mater., 2010, vol. 22, p. 3283.

    Article  CAS  Google Scholar 

  29. Park, C.Y., Huang, D.X., Jacobson, A.J., Hu, L., and Mims, C.A., Solid State Ionics, 2006, vol. 177, p. 2227.

    Article  CAS  Google Scholar 

  30. Fagg, D.P., Kharton, V.V., Kovalevsky, A.V., Viskup, A.P., Naumovich, E.N., and Frade, J.R., J.Eur. Ceram. Soc., 2001, vol. 21, p. 1831.

    Article  CAS  Google Scholar 

  31. Hosseini, N.R., Sammes, N.M., and Chung, J.Sh., J.Power Sources, 2014, vol. 245, p. 599.

    Article  Google Scholar 

  32. Molero-Sanchez, B., Prado-Gonjal, J., Avila-Brande, D., Chen, M., Moran, E., and Birss, V., Int. J. Hydrogen Energy, 2015, vol. 40, p. 1902.

    Article  CAS  Google Scholar 

  33. Dunyushkina, L.A., Gorbunov, V.A., Babkina, A.A., and Esina, N.O., Ionics, 2003, vol. 9, p. 67.

    Article  CAS  Google Scholar 

  34. Azad, A.K., Eriksson, G.G., and Irvine, J.T.S., Mater. Res. Bull., 2009, vol. 44, p. 1451.

    Article  CAS  Google Scholar 

  35. Shannon, R.D., Acta. Crystal., 1976, vol. A32, p. 751.

    Article  CAS  Google Scholar 

  36. Jiang, S.P., Liu, L., Wong, K.P., Wu, P., Li, J., and Pu, J., J.Power Sources, 2008, vol. 176, p. 82.

    Article  CAS  Google Scholar 

  37. Kharton, V.V., Kovalevsky, A.A., Patrakeev, M.V., Tsipis, E.V., Viskup, A.P., Kolotygin, V.V., Yaremchenko, A.A., Shaula, A.L., Kiselev, E.A., and Waerenborgh, J.C., Chem. Mater., 2008, vol. 20, p. 6457.

    Article  CAS  Google Scholar 

  38. Serra, J.M., Vert, V.B., Betz, M., Haanappel, V.A.C., Meulenberg, W.A., and Tietz, F., J.Electrochem. Soc., 2008, vol. 155, p. B207.

    Article  Google Scholar 

  39. Baumann, F.S., Fleig, J., Cristiani, G., Stuhlhofer, B., Habermeier, H.U., and Maier, J., J.Electrochem. Soc., 2007, vol. 154, p. B913.

    Article  Google Scholar 

  40. Shao, Z.P., Yang, W.S., Cong, Y., Dong, H., Tong, J.H., and Xiong, G.X., J.Membr. Sci., 2000, vol. 172 P, p. 177.

    Article  CAS  Google Scholar 

  41. Marozau, I.P., Kharton, V.V., Viskup, A.P., Frade, J.R., and Samakhval, V.V., J.Eur. Ceram. Soc., 2006, vol. 26, p. 1371.

    Article  CAS  Google Scholar 

  42. Matsui, T., Thermochim. Acta, 1995, vol. 253, p. 155.

    Article  CAS  Google Scholar 

  43. Kreuer, K.D., Adams, St., Munch, W., Fuchs, A., Klock, U., and Maier, J., Solid State Ionics, 2001, vol. 145, p. 295.

    Article  CAS  Google Scholar 

  44. Chen, G., Kishimoto, H., Yamaji, K., Kuramoto, K., and Horita, T., J.Electrochem. Soc., 2015, vol. 162, p. F223.

    Article  Google Scholar 

  45. Burnat, D., Heel, A., Holzer, L., Otal, E., Kata, D., and Graule, T., Int. J. Hydrogen Energy, 2012, vol. 37, p. 18326.

    Article  CAS  Google Scholar 

  46. Ma, Q., Tietz, F., Sebold, D., and Stover, D., J.Power Sources, 2010, vol. 195, p. 1920.

    Article  CAS  Google Scholar 

  47. Hagenmuller, P., Pouchard, M., and Grenier, J.C., Solid State Ionics, 1990, vol. 43, p. 7.

    Article  CAS  Google Scholar 

  48. Nemudry, A., Weiss, M., Gainutdinov, I., Boldyrev, V., and Schollhorn, R., Chem. Mater., 1998, vol. 10, p. 2403.

    Article  CAS  Google Scholar 

  49. Berastegui, P., Eriksson, S.G., and Hull, S., Mater. Res. Bull., 1999, vol. 34, p. 303.

    Article  CAS  Google Scholar 

  50. Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., Leonidov, I.A., Kozhevnikov, V.L., and Poeppelmeier, K.R., J.Solid State Chem., 2003, vol. 172, p. 219.

    Article  CAS  Google Scholar 

  51. Sfeir, J., J.Power Sources, 2003, vol. 118, p. 276.

    Article  CAS  Google Scholar 

  52. Oishi, M., Yashiro, K., Sato, K., Mizusaki, J., and Kawada, T., J.Solid State Chem., 2008, vol. 181, p. 3177.

    Article  CAS  Google Scholar 

  53. Mizusaki, J., Yonemura, Y., Kamata, H., Ohyama, K., Mori, N., Takai, H., Tagawa, H., Dokiya, M., Naraya, K., Sasamoto, T., Inaba, H., and Hashimoto, T., Solid State Ionics, 2000, vol. 132, p. 167.

    Article  CAS  Google Scholar 

  54. Vashook, V., Vasylechko, L., Zosel, J., Muller, R., Ahlborn, E., and Guth, U., Solid State Ionics, 2004, vol. 175, p. 151.

    Article  CAS  Google Scholar 

  55. Karen, P. and Norby, T., J.Electrochem. Soc., 1998, vol. 145, p. 264.

    Article  CAS  Google Scholar 

  56. Kim, J.Y., Song, C.R., and Yoo, H.I., J.Electroceram., 1997, vol. 1, p. 27.

    Article  CAS  Google Scholar 

  57. Fu, Q.X. and Tietz, F., Fuel Cells, 2008, vol. 8, p. 283.

    Article  CAS  Google Scholar 

  58. Sarantaridis, D. and Atkinson, A., Fuel Cells, 2007, vol. 7, p. 246.

    Article  CAS  Google Scholar 

  59. Steinsvik, S., Bugge, R., Gjonnes, J., Tafto, J., and Norby, T., J.Phys. Chem. Solids, 1997, vol. 58, p. 969.

    Article  CAS  Google Scholar 

  60. Tsipis, E.V., Kiselev, E.A., Kolotygin, V.A., Waerenborgh, J.C., Cherepanov, V.A., and Kharton, V.V., Solid State Ionics, 2009, vol. 179, p. 2170.

    Article  Google Scholar 

  61. Tsipis, E.V., Patrakeev, M.V., Kharton, V.V., Yaremchenko, A.A., Mather, G.C., Shaula, A.L., Leonidov, I.A., Kozhevnikov, V.L., and Frade, J.R., Solid State Sci., 2005, vol. 7, p. 355.

    Article  CAS  Google Scholar 

  62. Kharton, V.V., Marozau, I.P., Vyshatko, N.P., Shaula, A.L., Viskup, A.P., Naumovich, E.N., and Marques, F.M.B., Mater. Res. Bull., 2003, vol. 38, p. 773.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolotygin.

Additional information

Original Russian Text © V.A. Kolotygin, E.V. Tsipis, M.V. Patrikeev, A.I. Ivanov, V.V. Kharton, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 7, pp. 704–717.

Published on the basis of the materials of III All-Russia Conference “Fuel Cells and Power Plants on Their Basis,” Chernogolovka, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolotygin, V.A., Tsipis, E.V., Patrikeev, M.V. et al. Stability, mixed conductivity, and thermomechanical properties of perovskite materials for fuel cell electrodes based on La0.5A0.5Mn0.5Ti0.5O3–δ, La0.5Ba0.5Ti0.5Fe0.5O3–δ, and (La0.5А0.5)0.95Cr0.5Fe0.5O3–δ (A = Ca, Ba). Russ J Electrochem 52, 628–641 (2016). https://doi.org/10.1134/S1023193516070089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516070089

Keywords

Navigation