Skip to main content
Log in

Nanocomposite Polymer Electrolytes for the Lithium Power Sources (a Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocomposite polymer electrolytes represent a perspective class of polymer electrolytes for electrochemical devices in which nanodisperse filler is introduced to the “solvating matrix + lithium salt” base composition. This three-section paper reviews studies devoted to the preparing and investigating of different types of novel nanocomposite polymer electrolytes for lithium power sources carried out for the last 15 years. Its first section is devoted to the solid nanocomposite polymer electrolyte consisting of polyethylene oxide, lithium salt, and nanodisperse filler (Al2O3, TiO2, SiO2, etc.); the second section, to nanocomposite polymer membranes based on the polyvinylidene fluoride-co-hexafluoropropylene that can be used as a substitute for inert polyolefine separator of polypropylene, polyethylene, or their alternating layers. It is this type of the nanocomposite polymer electrolytes that is the most perspective one; the great majority of publications are dedicated to this electrolyte. The third section of the review covers the studies of the nanocomposite polymer electrolytes based on different polymers, oligomers, and co-polymers prepared by different methods. Nanoparticles of Al2O3, TiO2, SiO2, ZnO, MgO, Fe3O4, Ca3(PO4)2, ZrO2, clay, ferroelectric ceramics SrBi4Ti4O15, a compound SO42-–ZrO2, molecular sieves, nanochitin, etc., are discussed as possible additives to the nanocomposite polymer electrolytes. The reference list contains 101 items.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephan, A.M. and Nahm, K.S., Review on composite polymer electrolytes for lithium batteries, Polymer, 2006, vol. 47, no. 16, p. 5952.

    Article  CAS  Google Scholar 

  2. Agrawal, R.C. and Pandey, G.P., Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D: Appl. Phys., 2008, vol. 41, p. 223001.

    Article  Google Scholar 

  3. Yarmolenko, O.V. and Khatmullina, K.G., Polymer electrolytes for lithium power sources: state-of-the-art and development prospect, Al’ternativnaya energetika ekologiya, 2010, no. 3, p. 59.

    Google Scholar 

  4. Yarmolenko, O.V., Nanokompozitnye polimernye elektrolity, Nanostrukturirovannye materialy dlya zapasaniya i preobrazovaniya energii (Nanocomposite Polymer Electrolytes for the Energy Conversion and Storage), Razumov, V.F. and Klyuev, M.V., Eds., Ivanovo: Ivan. Gos. Univ., 2009, p. 177–204.

  5. Yarmolenko, O.V. and Yudina, A.V., Nanocomposite polymeric electrolytes. Part II, Organic and Hybrid Nanomaterials: Trends and Prospects, Razumov, V.F. and Klyuev, M.V., Eds., Ivanovo: Ivan. Gos. Univ., 2013, p. 73–118.

  6. Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., and Schalkwijk, Van W., Nanostructured materials for advanced energy conversion and storage devices, Nature Materials, 2005, vol. 4, no. 5, p. 366.

    Article  Google Scholar 

  7. Borodin, O., Smith, G.D., Bandyopadhyaya, R., Redfern, P., and Curtiss, L.A., Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4, Model. Simul. Mater. Sci. Eng., 2004, vol. 12, p. 73.

    Article  Google Scholar 

  8. Volkov, V.I. and Marinin, A.A., NMR methods for studying ion and molecular transport in polymer electrolytes, Russ. Chem. Rev., 2013, vol. 82, no. 3.

    Google Scholar 

  9. Vogel, M., Herbers, C., and Koch, B., Effects of salt and nanoparticles on the segmental motion of poly(ethylene oxide) in its crystalline and amorphous phases: 2H and 7Li NMR studies, J. Phys. Chem. B., 2008, vol. 112, no. 3, p. 11217.

    Article  CAS  Google Scholar 

  10. Chen-Yang, Y.W., Wang, Y.L., Chen, Y.T., Li, Y.K., Chen, H.C., and Chiu, H.Y., Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery, J. Power Sources, 2008, vol. 182, no. 1, p. 340.

    Article  CAS  Google Scholar 

  11. Reddy, M.J. and Chu, P.P., 7Li NMR spectroscopy and ion conduction mechanism in mesoporous silica (SBA-15) composite poly(ethylene oxide) electrolyte, J. Power Sources, 2004, vol. 135, nos. 1–2, p. 1.

    Article  CAS  Google Scholar 

  12. Money, B.K., Hariharan, K., and Swenson, J., Glass transition and relaxation processes of nanocomposite polymer electrolytes, J. Phys. Chem. B, 2012, vol. 116, no. 26, p. 7762.

    Article  CAS  Google Scholar 

  13. Bhattacharya, S. and Ghosh, A., Effect of zno nanoparticles on the structure and ionic relaxation of poly(ethylene oxide)-LiI polymer electrolyte nanocomposites, J. Nanosci. Nanotechnol., 2008, vol. 8, p. 1922.

    Article  CAS  Google Scholar 

  14. Reddy, M.J., Chu, P.P., Kumar, J.S., and Rao, U.V.S., Inhibited crystallization and its effect on conductivity in a nano-sized fe oxide composite peo solid electrolyte, J. Power Sources, 2006, vol. 161, p. 535.

    Article  CAS  Google Scholar 

  15. Shanmukaraj, D. and Murugan, R., Characterization of PEG: LiClO4 + SrBi4Ti4O15 nanocomposite polymer electrolytes for lithium secondary batteries, J. Power Sources, 2005, vol. 149, p. 90.

    Article  CAS  Google Scholar 

  16. Xi, J., Qiu, X., Zheng, S., and Tang, X., Nanocomposite polymer electrolyte comprising PEO/LiClO4 and solid super acid: effect of sulphated-zirconia on the crystallization kinetics of PEO, Polymer, 2005, vol. 46, p. 5702.

    Article  CAS  Google Scholar 

  17. Xi, J., Bai, Y., Qiu, X., Zhu, W., Chena, L., and Tang, X., Conductivities and transport properties of microporous molecular sieves doped composite polymer electrolyte used for lithium polymer battery, New J. Chem., 2005, vol. 29, p. 1454.

    Article  CAS  Google Scholar 

  18. Angulakshmi, N., Kumar, T.P., Thomas, S., and Stephan, A.M., Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide-LiN(LiN(C2F5SO2)2 polymer electrolytes, Electrochim. Acta, 2010, vol. 55, p. 1401.

    Article  CAS  Google Scholar 

  19. Gupta, N., Thokchom, J.S., and Kumar, B., A direct current pulse technique to enhance conductivity of heterogeneous electrolytes, J. Power Sources, 2008, vol. 185, p. 1415.

    Article  CAS  Google Scholar 

  20. Stephan, A.M., Kumar, T.P., Thomas, S., Bongiovanni, R., Nair, J.R., Angulakshmi, N., and Pollicino, A., Ca3(PO4)2-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. Part II. interfacial properties investigated by XPS and a.c. impedance studies, J. Appl. Polym. Sci., 2011, vol. 124, p. 3255.

    Article  Google Scholar 

  21. Johan, M.R., Yasin, S.M.M., and Ibrahim, S., Bayesian neural networks model for ionic conductivity of nanocomposite solid polymer electrolyte system (PEO–LiCF3SO3–DBP–ZrO2), Int. J. Electrochem. Sci., 2012, vol. 7, p. 222.

    CAS  Google Scholar 

  22. Kim, S. and Park, S.-J., Preparation and ion-conducting behaviors of poly(ethylene oxide)-composite electrolytes containing lithium montmorillonite, Solid State Ionics, 2007, vol. 178, p. 973.

    Article  CAS  Google Scholar 

  23. Choudhary, S. and Sengwa, R.J., Effect of different anions of lithium salt and MMT nanofiller on ion conduction in melt-compounded PEO-LiX-MMT electrolytes, Ionics, 2012, vol. 18, p. 379.

    Article  CAS  Google Scholar 

  24. Moreno, M., Quijada, R., Ana, M.A.S., Benavente, E., Gomez-Romero, P., and Gonzalez, G., Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte, Electrochim. Acta, 2011, vol. 58, p. 112.

    Article  CAS  Google Scholar 

  25. Shukla, N. and Thakur, A.K., Enhancement in electrical and stability properties of amorphous polymer based nanocomposite electrolyte, J. Non-Cryst. Solids, 2011, vol. 357, nos. 22–23, p. 3689.

    Article  CAS  Google Scholar 

  26. Shah, Md.S.A.S., Basak, P., and Manorama, S.V., Polymer nanocomposites as solid electrolytes: evaluating ion–polymer and polymer–nanoparticle interactions in PEG-PU/PAN semi-IPNs and titania systems, J. Phys. Chem. C, 2010, vol. 114, no. 33, p. 14281.

    Article  CAS  Google Scholar 

  27. Chilaka, N. and Ghosh, S., Solid-state poly(ethylene glycol)-polyurethane/ polymethylmethacrylate/ rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties, Electrochim. Acta, 2012, vol. 62, p. 362.

    Article  CAS  Google Scholar 

  28. Chebotarev, V.P., Putsylov, I.A., and Smirnov, S.S., Study of aromatic-polysulfon-based polymer electrolytes, Plasticheskie massy, 2008, no. 1, p. 42.

    Google Scholar 

  29. Smirnov, S.S., Lovkov, S.S., Putsylov, I.A., Smirnov, K.S., and Savostyanov, A.N., Development and investigation of solid polymer electrolytes, Int. Polymer Sci. Technol., 2011, vol. 38, no. 9, p. 37.

    Google Scholar 

  30. Zubtsova, K.S. and Mikhaylova, A.M., Development of technological foundations for the creation of a lithium power source with a solid polymer electrolyte, Al’ternativn. energetika ekologiya, 2013, no. 120, p. 112.

    Google Scholar 

  31. Zubtsova, K.S., Prudnikov, N.V., Dubrova, T.V., Gorskaya, N.I., and Mikhaylova, A.M., Superionic conductors based on polyacrylates for energy and information converters, Al’ternativnaya energetika ekologiya, 2015, no. 20 (184), p. 102.

    Google Scholar 

  32. Aravindan, V., Vickraman, P., Sivashanmugam, A., Thirunakaran, R., and Gopukumar, S., Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries, Curr. Appl. Phys., 2013, vol. 13, p. 293.

    Article  Google Scholar 

  33. Aravindan, V. and Vickraman, P., Nanoparticulate AlO(OH)n filled polyvinylidenefluoride-co-hexafluoropropylene based microporous membranes for lithium ion batteries, J. Renew. Sust. Energy, 2009, vol. 1, no. 2, p. 023108.

    Article  Google Scholar 

  34. Aravindan, V., Senthilkumar, V., Nithiananthi, P., and Vickraman, P., Characterization of poly(vinylidenefluoride-co-hexafluoroprolylene) membranes containing nanoscopic AlO(OH)n filler with Li/LiFePO4 cell, J. Renew. Sust. Energy, 2010, vol. 2, no. 3, p. 033105.

    Article  Google Scholar 

  35. Rharbi, Y., Cabane, B., Vacher, A., Joanicot, M., and Boue, F., Modes of deformation in a soft/hard nanocomposite: a SANS study, Europhys. Lett., 1999, vol. 46, no. 4, p. 472.

    Article  CAS  Google Scholar 

  36. Gersappe, D., Molecular mechanisms of failure in polymer nanocomposites, Phys. Rev. Lett., 2002, vol. 89, no. 5, p. 058301.

    Article  Google Scholar 

  37. Aravindan, V., Vickraman, P., and Krishnaraj, K., Li+ ion conduction in TiO2 filled polyvinylidenefluorideco-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LIDFOB, Curr. Appl. Phys., 2009, vol. 9, no. 6, p. 1474.

    Article  Google Scholar 

  38. Shah, D., Maiti, P., Gunn, E., Schmidt, D.F., Jiang, D.D., Batt, C.A., and Giannelis, E.P., Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology, Adv. Mater., 2004, vol. 16, no. 14, p. 1173.

    Article  CAS  Google Scholar 

  39. Shah, D., Maiti, P., Jiang, D.D., Batt, C.A., and Giannelis, E.P., Effect of nanoparticle mobility on toughness of polymer nanocomposites, Adv. Mater., 2005, vol. 17, no. 5, p. 525.

    Article  CAS  Google Scholar 

  40. Nunes-Pereira, J., Lopes, A.C., Costa, C.M., Leones, R., and Silva, M.M., Porous membranes of montmorillonite/ poly(vinylidene fluoride-trifluorethylene) for Li-ion battery separators, Electroanalysis, 2012, vol. 24, no. 11, p. 2147.

    Article  CAS  Google Scholar 

  41. Vijayakumar, G. and Karthick, S.N., Sathiyapriya A.R., Ramalingam S., and Subramania A., Effect of nanoscale CeO2 on PVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries, J. Solid State Electrochem., 2008, vol. 12, no. 9, p. 1135.

    Article  CAS  Google Scholar 

  42. Aravindan, V. and Vickraman, P., Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO2 filler, Mater. Chem. Phys., 2009, vol. 115, no. 1, p. 251.

    Article  CAS  Google Scholar 

  43. Aravindan, V., Vickraman, P., and Kumar, T.P., ZrO2 nanofiller incorporated PVC/PVDF blend-based composite polymer electrolytes (CPE) complexed with LIBOB, J. Membr. Sci., 2007, vol. 305, nos. 1–2, p. 146.

    Article  CAS  Google Scholar 

  44. Li, Z.H., Xiao, Q.Z., Zhang, P., Zhang, H.P., Wu, Y.P., and Ree, T.V., Porous nanocomposite polymer electrolyte prepared by a non-solvent induced phase separation process, Funct. Mater. Lett., 2008, vol. 1, no. 2, p. 139.

    Article  CAS  Google Scholar 

  45. Li, Z.H., Zhang, H.P., Zhang, P., Wu, Y.P., and Zhou, X.D., Macroporous nanocomposite polymer electrolyte for lithium-ion batteries, J. Power Sources, 2008, vol. 184, p. 562.

    Article  CAS  Google Scholar 

  46. He, X., Shi, Q., Zhou, X., Wan, C., and Jiang, C., In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries, Electrochim. Acta, 2005, vol. 51, p. 1069.

    Article  CAS  Google Scholar 

  47. Li, Z.H., Zhang, H.P., Zhang, P., Li, G.C., Wu, Y.P., and Zhou, X.D., Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries, J. Membr. Sci., 2008, vol. 322, no. 2, p. 416.

    Article  CAS  Google Scholar 

  48. Saikia, D., Chen-Yang, Y.W., Chen, Y.T., Li, Y.K., and Lin, S.I., 7Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: a comparative study with variation of salt and plasticizer with filler, Electrochim. Acta, 2009, vol. 54, no. 4, p. 1218.

    Article  CAS  Google Scholar 

  49. Vijayakumar, G., Karthick, S.N., Paramasivam, R., and Ilamaran, C., Morphology and electrochemical properties of P(VdF-HFP)/MgO-based composite microporous polymer electrolytes for Li-ion polymer batteries, Polym. Plast. Technol. Eng., 2012, vol. 51, p. 1427.

    Article  CAS  Google Scholar 

  50. Aravindan, V. and Vickraman, P., A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries, Solid State Sci., 2007, vol. 9, p. 1069.

    Article  CAS  Google Scholar 

  51. Bhatt, A.S. and Bhat, D.K., Influence of nanoscale nio on magnetic and electrochemical behavior of pvdfbased polymer nanocomposites, Polym. Bull., 2012, vol. 68, no. 1, p. 253.

    Article  CAS  Google Scholar 

  52. Jiang, Y.-X., Chen, Z.-F., Zhuang, Q.-C., Xu, J.-M., Dong, Q.-F., Huang, L., and Sun, S.-G., A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries, J. Power Sources, 2006, vol. 160, p. 1320.

    Article  CAS  Google Scholar 

  53. Yang, C.-C., Chen, Y.-C., Lian, Z.-Y., Liou, T.-H., and Shih, J.-Y., Fabrication and characterization of P(VDF-HFP) / SBA-15 composite membranes for Liion batteries, J. Solid State Electrochem., 2012, vol. 16, p. 1815.

    Article  CAS  Google Scholar 

  54. Walkowiak, M., Zalewska, A., Jesionowski, T., and Pokora, M., Stability of poly(vinylidene fluoride-cohexafluoropropylene)-based composite gel electrolytes with functionalized silicas, J. Power Sources, 2007, vol. 173, p. 721.

    Article  CAS  Google Scholar 

  55. Lee, Y.-S., Shin, W.-K., Kim, J.S., and Kim, D.-W., High performance composite polymer electrolytes for lithium-ion polymer cells composed of a graphite negative electrode and LiFePO4 positive electrode, RSC Adv., 2015, vol. 5, p. 18359.

    Article  CAS  Google Scholar 

  56. Zhou, L., Wu, N., Cao, Q., Jing, B., Wang, X., Wang, Q., and Kuang, H., A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries, Solid State Ionics, 2013, vol. 249-250, p. 93.

    Article  CAS  Google Scholar 

  57. Li, M., Guo, Y., Wei, Y., Macdiarmid A.G., and Lelkes P.I., Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications, Biomaterials, 2006, vol. 27, no. 13, p. 2705.

    Article  CAS  Google Scholar 

  58. Kim, J-K., Cheruvally, G., Li, X., Ahn, J-H., Kim, K-W., and Ahn, H-J., Preparation and electrochemical characterization of electrospun, microporous membranebased composite polymer electrolytes for lithium batteries, J. Power Sources, 2008, vol. 178, no. 2, p. 815.

    Article  CAS  Google Scholar 

  59. Cho, T-H., Tanaka, M., Onishi, H., Kondo, Y., Nakamura, T., Yamazaki, H., Tanase, S., and Sakai, T., Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery, J. Power Sources, 2008, vol. 181, no. 1, p. 155.

    Article  CAS  Google Scholar 

  60. Cheruvally, G., Kim, J-K., Choi, J-W., Ahn, J-H., Shin, Y-J., Manuel, J., Raghavan, P., Kim, K-W., Ahn, H-J., Choi, D.S., and Song, C.E., Electrospun polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries, J. Power Sources, 2007, vol. 172, no. 2, p. 863.

    Article  CAS  Google Scholar 

  61. Lalia, B.S., Samad, Y.A., and Hashaikeh, R., Nanocrystalline cellulose-reinforced composite mats for lithium-ion batteries: electrochemical and thermomechanical performance, J. Solid State Electrochem., 2013, vol. 17, no. 3, p. 575.

    Article  CAS  Google Scholar 

  62. Zimmermann, T., Pöhler, E., and Geiger, T., Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater., 2004, vol. 6, no. 9, p. 754.

    Article  Google Scholar 

  63. Jeong, H-S., Choi, E-S., Kim, J.H., and Lee, S-Y., Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries, Electrochim. Acta, 2011, vol. 56, no. 14, p. 5201.

    Article  CAS  Google Scholar 

  64. Shubha, N., Prasanth, R., Hoon, H.H., and Srinivasan, M., Dual phase polymer gel electrolyte based on non-woven poly(vinylidenefluoride-co-hexafluoropropylene)— layered clay nanocomposite fibrous membranes for lithium ion batteries, Mater. Res. Bull., 2013, vol. 48, no. 2, p. 526.

    Article  CAS  Google Scholar 

  65. Morita, M., Niida, Y., Yoshimoto, N., and Adachi, K., Polymeric gel electrolyte containing alkyl phosphate for lithium-ion batteries, J. Power Sources, 2005, vol. 146, nos. 1–2, p. 427.

    Article  CAS  Google Scholar 

  66. Rao, M.M., Liu, J.S., Li, W.S., Liang, Y., and Zhou, D.Y., Preparation and performance analysis of pe-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery application, J. Membr Sci., 2008, vol. 322, no. 2, p. 314.

    Article  CAS  Google Scholar 

  67. Kufian, M.Z., Aziz, M.F., Shukur, M.F., Rahim, A.S., Ariffin, N.E., Shuhaimi, N.E.A., Majid, S.R., Yahya, R., and Arof, A.K., PMMA–LIBOB gel electrolyte for application in lithium ion batteries, Solid State Ionics, 2012, vol. 208, p. 36.

    Article  CAS  Google Scholar 

  68. Jung, H-R., Ju, D-H., Lee, W-J., Zhang, X., and Kotek, R., Electrospun hydrophilic fumed silica/ polyacrylonitrile nanofiber-based composite electrolyte membranes, Electrochim. Acta, 2009, vol. 54, no. 13, p. 3630.

    Article  CAS  Google Scholar 

  69. Smirnov, S.E., Siling, S.A., Korovin, N.V., Morgunov, D.A., and Ogorodnikov, A.A., Polymer Electrolytes for lithium power sources, Russ. J. Electrochem., 2001, vol. 37, no. 9, p. 1143.

    Google Scholar 

  70. Chebotarev, V.P., Smirnov, S.Ye., and Komkov, V.A., Gel-polymer electrolytes based on polysulfone for lithium power sources, Plasticheskiye massy, 2003, no. 11, p. 7.

    Google Scholar 

  71. Cui, W-W., Tang, D-Y., and Gong, Z-L., Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries, J. Power Sources, 2013, vol. 223, p. 206.

    Article  CAS  Google Scholar 

  72. Deka, M. and Kumar, A., Enhanced electrical and electrochemical properties of PMMA-clay nanocomposite gel polymer electrolytes, Electrochim. Acta, 2010, vol. 55, no. 5, p. 1836.

    Article  CAS  Google Scholar 

  73. Deka, M. and Kumar, A., Enhanced ionic conductivity in novel nanocomposite gel polymer electrolyte based on intercalation of PMMA into layered LiV3O8, J. Solid State Electrochem., 2010, vol. 14, pp. 1649–1656.

    Article  CAS  Google Scholar 

  74. Moreno, M., Ana, M.A.S., Gonzalez, G., and Benavente, E., Poly(acrylonitrile)-montmorillonite nanocomposites: effects of the intercalation of the filler on the conductivity of composite polymer electrolytes, Electrochim. Acta, 2010, vol. 55, no. 4, p. 1323.

    Article  CAS  Google Scholar 

  75. Kurc, B. and Jesionowski, T., Modified LiV3O8 ceramic filler for a composite gel polymer electrolytes working with LiMn2O4, J Solid State Electrochem., 2015, vol. 19, p. 1427.

    Article  CAS  Google Scholar 

  76. Rajasudha, G., Jayan, L.M., Durgalakshmi, D., Thangadurai, P., Boukos, N., Narayanan, V., and Stephen, A., Polyindole-CuO composite polymer electrolyte containing LiClO4 for lithium ion polymer batteries, Polym. Bull., 2012, vol. 68, no. 1, p. 181.

    Article  CAS  Google Scholar 

  77. Chand, N., Rai, N., Agrawal, S.L., and Patel, S.K., Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol composite gel electrolyte, Bull. Mater. Sci., 2011, vol. 34, no. 7, p. 1297.

    Article  CAS  Google Scholar 

  78. Low, S.P., Ahmad, A., Hamzah, H., and Rahman, M.Y.A., Nanocomposite solid polymeric electrolyte of 49% poly(methyl methacrylate)-grafted natural rubbertitanium dioxide-lithium tetrafluoroborate (MG49-TiO2-LiBF4), J Solid State Electrochem., 2011, vol. 15, p. 2611.

    Article  CAS  Google Scholar 

  79. Cao, J., Wang, L., Fang, M., Shang, Y., Deng, L., Yang, J., Li, J., Chen, H., and He, X., Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery, Electrochim. Acta, 2013, vol. 114, p. 527.

    Article  CAS  Google Scholar 

  80. Rajendran, S., Kesavan, K., Nithya, R., and Ulaganathan, M., Transport, structural and thermal studies on nanocomposite polymer blend electrolytes for Li-ion battery applications, Curr. Appl. Phys., 2012, vol. 12, no. 3, p. 789.

    Article  Google Scholar 

  81. Pu, W., He, X., Wang, L., Tian, Z., Jiang, C., and Wan, C., Preparation of P(AN-MMA) gel electrolyte for Li-ion batteries, Ionics, 2008, vol. 14, no. 1, p. 27.

    Article  CAS  Google Scholar 

  82. Ramesh, S. and Liew, C.-W., Tailor-made fumed silica-based nano-composite polymer electrolytes consisting of BmimTFSI ionic liquid, Iran Polymer J., 2012, vol. 21, no. 4, p. 273.

    Article  CAS  Google Scholar 

  83. Liao, Y.H., Rao, M.M., Li, W.S., Yang, L.T., Zhu, B.K., Xu, R., and Fu, C.H., Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery, J. Membr. Sci., 2010, vol. 352, nos. 1–2, p. 95.

    Article  CAS  Google Scholar 

  84. Liao, Y.H., Rao, M.M., Li, W.S., Tan, C.L., Yi, J., and Chen, L., Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries, Electrochim. Acta, 2009, vol. 54, no. 26, p. 6396.

    Article  CAS  Google Scholar 

  85. Deka, M. and Kumar, A., Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries, J. Power Sources, 2011, vol. 196, no. 3, p. 1358.

    Article  CAS  Google Scholar 

  86. Deka, M., Kumar, A., Deka, H., and Karak, N., Ionic transport studies in hyperbranched polyurethane/clay nanocomposite gel polymer electrolytes, Ionics, 2012, vol. 18, no. 1, p. 181.

    Article  CAS  Google Scholar 

  87. Park, H.G. and Ryu, S.W., Effect of monomers and initiators on electrochemical properties of gel polymer electrolytes, Polymer Korea, 2010, vol. 34, no. 4, p. 357.

    CAS  Google Scholar 

  88. Kang, W.C., Park, H.G., Kim, K.C., and Ryu, S.W., Synthesis and electrochemical properties of lithium methacrylate-based self-doped gel polymer electrolytes, Electrochim. Acta, 2009, vol. 54, no. 19, p. 4540.

    Article  CAS  Google Scholar 

  89. Hashmi, S.A., Kumar, A., and Tripathi, S.K., Experimental studies on poly methyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors, J. Phys. D, Appl. Phys., 2007, vol. 40, no. 21, p. 6527.

    Article  CAS  Google Scholar 

  90. Ramesh, S. and Ang, G.P., Impedance and ftir studies on plasticized PMMA–LiN(CF3SO2)2 nanocomposite polymer electrolytes, Ionics, 2010, vol. 16, no. 5, p. 465.

    Article  CAS  Google Scholar 

  91. Yarmolenko, O.V., Khatmullina, K.G., Kurmaz, S.V., Baturina, A.A., Bubnova, M.L., Shuvalova, N.I., Grachev, V.P., and Efimov, O.N., New lithium-conducting gel electrolytes containing superbranched polymers, Russ. J. Electrochem., 2013, vol. 49, p. 252.

    Article  CAS  Google Scholar 

  92. Cho, B.W., Kim, D.H., Lee, H.W., and Na, B.K., Electrochemical properties of gel polymer electrolyte based on poly(acrylonitrile)-poly(ethylene glycol diacrylate) blend, Korean J. Chem. Eng., 2007, vol. 24, no. 6, p. 1037.

    Article  CAS  Google Scholar 

  93. Lee, K.H., Lim, H.S., and Wang, J.H., Effect of unreacted monomer on performance of lithium-ion polymer batteries based on polymer electrolytes prepared by free radical polymerization, J. Power Sources, 2005, vol. 139, p. 284.

    Article  CAS  Google Scholar 

  94. Yarmolenko, O.V., Khatmullina, K.G., Tulibaeva, G.Z., Bogdanova, L.M., and Shestakov, A.F., Towards the mechanism of Li+ ion transfer in the net solid polymer electrolyte based on polyethylene glycol diacrylate-LiClO, J. Solid State Electrochem., 2012, vol. 16, p. 3371.

    Article  CAS  Google Scholar 

  95. Ishmukhametova, K.G., Yarmolenko, O.V., Bogdanova, L.M., Rozenberg, B.A., and Efimov, O.N., New solid polymer electrolytes based on polyester diacrylate for lithium power sources, Russ. J. Electrochem., 2009, vol. 45, p. 594.

    Article  Google Scholar 

  96. Yarmolenko, O.V., Khatmullina, K.G., Bogdanova, L.M., Shuvalova, N.I., Dzhavadyan, E.A., Marinin, A.A., and Volkov, V.I., Effect of TiO2 nanoparticle additions on the conductivity of network polymer electrolytes for lithium power sources, Russ. J. Electrochem., 2014, vol. 50, p. 336.

    Article  CAS  Google Scholar 

  97. Yarmolenko, O.V., Yudina, A.V., Marinin, A.A., Chernyak, A.V., Volkov, V.I., Shuvalova, N.I., and Shestakov, A.F., Nanocomposite network polymer gel-electrolytes: TiO2- and Li2TiO3-nanoparticle effects on their structure and properties, Russ. J. Electrochem., 2015, vol. 51, no. 5, p. 412.

    Article  CAS  Google Scholar 

  98. Ibrahim, S. and Johan, M.R., Conductivity, thermal and neural network model nanocomposite solid polymer electrolyte system (PEO-LiPF6–EC-CNT), Int. J. Electrochem. Sci., 2011, vol. 6, no. 11, p. 5565.

    CAS  Google Scholar 

  99. Ibrahim, S., Yasin, S.M.M., Nee, N.M., Ahmad, R., and Johan, M.R., Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes, Solid State Commun., 2012, vol. 152, no. 5, p. 426.

    Article  CAS  Google Scholar 

  100. Tang, C., Hackenberg, K., Fu, Q., Ajayan, P.M., and Ardebili, H., High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers, Nano Lett., 2012, vol. 12, no. 3, p. 1152.

    Article  CAS  Google Scholar 

  101. Li, Y., Luo, D., and Yang, M., Novel nanocomposite of poly(acrylonitrile-co-glycidyl methacrylate) crosslinked with jeffamine-functionalized multiwalled carbon nanotubes as gel polymer electrolytes, J. Appl. Polym. Sci., 2013, vol. 127, no. 3, p. 2243.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Yarmolenko.

Additional information

Original Russian Text © O.V. Yarmolenko, A.V. Yudina, K.G. Khatmullina, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 4, pp. 377–394.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarmolenko, O.V., Yudina, A.V. & Khatmullina, K.G. Nanocomposite Polymer Electrolytes for the Lithium Power Sources (a Review). Russ J Electrochem 54, 325–343 (2018). https://doi.org/10.1134/S1023193518040092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518040092

Keywords

Navigation