Skip to main content
Log in

Mechanism of the Enhanced Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathode Materials by a Pre-Sintering Process

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

α-NaFeO2 layered LiNi1/3Co1/3Mn1/3O2 cathode materials were synthesized by mechanical milling accompanied by the solid phase sintering. The sample exhibited a good crystallinity and layered structure while sintered at 900°C, which can be further improved by adding a pre-sintering process at 500°C before high temperature sintering. The sample with a pre-sintering process presents an average particle size about 0.6 μm, and a hexagonal crystalline structure. The optimally fabricated sample showed a first charge capacity of 210.2 mA h/g, discharge capacity of 171.2 mA h/g with a current rate of 0.2 C within the voltage range of 2.7~4.5 V. With increasing the current rate to 1 C, the charge–discharge capacity faded quickly during the cycling process, which can be partially recovered while operated at a low current rate. However, the capacity fading at a current rate of 2 C was largely irreversible. The evolution of the surface chemical states was evaluated using X-ray photoelectron spectroscopy on the charged and discharged samples to understand the high rate capacity fading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L.L., Ma, Y.L., Cheng, X.Q., Zuo, P.J., Cui, Y.Z., Guan, T., Du, C.Y., Gao, Y.Z., and Yin, G.P., Enhancement of high voltage cycling performance and thermal stability of LiNi1/3Co1/3Mn1/3O2 cathode by use of boron-based additives, Solid State Ionics, 2014, vol. 263, p.146.

    Article  CAS  Google Scholar 

  2. Fang, X., Ge, M.Y., Rong, J.P., and Zhou, C.W., Freestanding LiNi0.5Mn1.5O4/carbon nanofiber network film as lightweight and high-power cathode for lithium ion batteries, Acs Nano, 2014, vol. 8, p. 4876.

    Article  CAS  Google Scholar 

  3. He, J.R., Chen, Y.F., Li, P.J., Wang, Z.G., Qi, F., and Liu, J.B., Synthesis and electrochemical properties of graphene-modified LiCo1/3Ni1/3Mn1/3O2 cathodes for lithium ion batteries, RSC Advances, 2014, vol. 4, p. 2568.

    Article  CAS  Google Scholar 

  4. Ohzuku, T. and Makimura, Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 2001, vol. 7, p.642.

    Article  Google Scholar 

  5. Yabuuchi, N. and Ohzuku, T., Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithiumion batteries, J. Power Sources, 2003, vol. 119–121, p.171.

    Article  Google Scholar 

  6. Yang, C.C., Lian, Z.Y., Lin, S.J., Shih, J.Y., and Chen, W.H., Preparation and application of PVDF-HFP composite polymer electrolytes in LiNi0.5Co0.2Mn0.3O2 lithium—polymer batteries, Electrochim. Acta, 2014, vol. 134, p.258.

    Article  CAS  Google Scholar 

  7. Kim, J.W., Travis, J.J., Hu, E.Y., Nam, K.W., Kim, S.C., Kang, S.S., Woo, J.H., Yang, X.Q., George, S.M., Oh, K.H., Cho, S.J., and Lee, S.H., Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes, J. Power Sources, 2014, vol. 254, p.190.

    Article  CAS  Google Scholar 

  8. Han, Y.M., Zhang, Z.F., Zhang, L.B., Peng, J.H., Fu,M.B., Srinivasakannan, C., and Du, J., Influence of carbon coating prepared by microwave pyrolysis on properties of LiNi1/3Co1/3Mn1/3O2, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, p. 2971.

    Article  CAS  Google Scholar 

  9. Shi, S.J., Lou, Z.R., Xia, T.F., Wang, X.L., Gu, C.D., and Tu, J.P., Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries, J. Power Sources, 2014, vol. 257, p.198.

    Article  CAS  Google Scholar 

  10. Ohzuku, T., Ueda, A., and Nagayama, M., ChemInform abstract: Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells, J. Electrochem. Soc., 1993, vol. 140, p. 1862.

    Article  CAS  Google Scholar 

  11. Yang, X.Q., Sun, X., and McBreen, J., New phases and phase transitions observed in Li1–xCoO2 during charge: in situ synchrotron X-ray diffraction studies, Electrochem. Commun., 2000, vol. 2, p.100.

    Article  CAS  Google Scholar 

  12. Yang, X.Q., McBreen, J., Yoon, W.S., and Grey, C.P., Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD, Electrochem. Commun., 2002, vol. 4, p.649.

    Article  CAS  Google Scholar 

  13. Lin, F., Markus, I.M., Nordlund, D., Weng, T.C., Asta, M.D., Xin, H.L., and Doeff, M.M., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Nat. Comm., 2014, vol. 5, p. 3529.

    Google Scholar 

  14. Hashema, A.M.A., Abdel-Ghanya, A.E., Eida, A.E., Trottier, J., Zaghibb, K., Maugerc, A., and Julien, C.M., Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery, J. Power Sources, 2011, vol. 196, p. 8632.

    Article  Google Scholar 

  15. Wang Q., Tian N., Xu K., Han L., Zhang J., Zhang W., Gu, Sh., and You, C., A facile method of improving the high rate cycling performance of LiNi1/3Co1/3Mn1/3O2 cathode material, J. Alloy. Comp., 2016, vol. 686, p.267.

    Article  CAS  Google Scholar 

  16. Shaju, K.M., Rao, G.V.S., and Chowdari, B.V.R., Performance of layered LiNi1/3Co1/3Mn1/3O2 as cathode for Li-ion batteries, Electrochim. Acta, 2002, vol. 48, p.145.

    Article  CAS  Google Scholar 

  17. Ghosh, P., Mahanty, S., and Basu, R.N., Effect of silver addition on the properties of combustion synthesized nanocrystalline LiCoO2, Mater. Chem. Phys., 2008, vol. 110, p.406.

    Article  CAS  Google Scholar 

  18. Rao, C.V., Reddy, A.L.M., Ishikawa, Y., and Ajayan, P.M., LiNi1/3Co1/3Mn1/3O2–Graphene composite as a promising cathode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 2966.

    Article  CAS  Google Scholar 

  19. Yabuuchi, N., Yoshii, K., Myung, S.T., Nakai, I., and Komaba, S., Detailed studies of a high-capacity electrode material for rechargeable battereis, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2, J. Am. Chem. Soc., 2011, vol. 133, p. 4404.

    Article  CAS  Google Scholar 

  20. Ohzuku, T., Ueda, A., Nagayama, M., Iwakoshi, Y., and Komori, H., Comparative study of LiCoO2, LiNiCoO2, and LiNiO2 for 4 volt secondary lithium cells, Electrochim. Acta, 1953, vol. 38, p. 1159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyin You.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 1, pp. 58–65.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., You, C., Wang, Q. et al. Mechanism of the Enhanced Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2 Cathode Materials by a Pre-Sintering Process. Russ J Electrochem 54, 49–55 (2018). https://doi.org/10.1134/S1023193518010044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518010044

Keywords

Navigation