Skip to main content
Log in

Long-range interfacial electron transfer and electrocatalysis of molecular scale Prussian Blue nanoparticles linked to Au(111)-electrode surfaces by different chemical contacting groups

  • Section 3. Electron Transfer Kinetics and Electrochemical Processes
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

We have explored interfacial electrochemical electron transfer (ET) and electrocatalysis of 5–6 nm Prussian Blue nanoparticles (PBNPs) immobilized on Au(111)-electrode surfaces via molecular wiring with variable-length, and differently functionalized thiol-based self-assembled molecular monolayers (SAMs). The SAMs contain positively (−NH3 +) or negatively charged (–COO–) terminal group, as well an electrostatically neutral hydrophobic terminal group (–CH3). The surface microscopic structures of the immobilized PBNPs were characterized by high-resolution atomic force microscopy (AFM) directly in aqueous electrolyte solution under the same conditions as for electrochemical measurements. The PBNPs displayed fast and reversible interfacial ET on all the surfaces, notably in multi-ET steps as reflected in narrow voltammetric peaks. The ET kinetics can be controlled by adjusting the length of the SAM forming linker molecules. The interfacial ET rate constants were found to depend exponentially on the ET distance for distances longer than a few methylene groups in the chain, with decay factors (β) of 0.9, 1.1, and 1.3 per CH2, for SAMs terminated by −NH3 +,–COO–, and–CH3, respectively. This feature suggests, first that the interfacial ET processes follow a tunneling mechanism, resembling that of metalloproteins in a similar assembly. Secondly, the electronic contact of the SAM terminal groups that anchor non-covalently the PBNP are crucial as reported for other types of molecular junctions. Highly efficient PBNP electrocatalysis of H2O2 reduction was also observed for the three linker groups, and the electrocatalytic mechanisms analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, G.C. and Hush, N.S., Progr. Inorg. Chem., 1967, vol. 8, p. 357.

    CAS  Google Scholar 

  2. Hush, N.S., Progr. Inorg. Chem., 1967, vol. 8, p. 391.

    CAS  Google Scholar 

  3. Hush, N.S., Homogeneous and heterogeneous optical and thermal electron transfer, Electrochim. Acta, 1968, vol. 13, p. 1005.

    Article  CAS  Google Scholar 

  4. Zhang, Y.N., Chu, Z.Y., Shi, L., and Jin, W.Q., Effect of temperature-controlled poly(diallyldimethylammonium chloride) on morphology of self-assembled Prussian blue electrode and its high detection sensitivity of hydrogen peroxide, Electrochim. Acta, 2011, vol. 56, p. 8163.

    Article  CAS  Google Scholar 

  5. Karyakin, A.A., Gitelmacher, O.V., and Karyakina, E.E., Prussian blue based first-generation biosensor–A sensitive amperometric electrode for glucose, Anal. Chem., 1995, vol. 67, p. 2419.

    Article  CAS  Google Scholar 

  6. Ricci, F. and Palleschi, G., Sensor and biosensor preparation, optimisation and applications of Prussian blue modified electrodes, Biosens. Bioelectron., 2005, vol. 21, p. 389.

    Article  CAS  Google Scholar 

  7. Miao, Y.Q., Chen, J.R., Wu, X.H., Fang, K.M., Jia, A.P., and Liu, J.W., Immobilization of Prussian blue nanoparticles onto thiol SAM modified Au electrodes for electroanalytical or biosensor applications, J. Nanosci. Nanotechnol., 2007, vol. 7, p. 2877.

    Article  CAS  Google Scholar 

  8. Karyakin, A.A. and Karyakina, E.E., Electroanalytical applications of Prussian blue and its analogs, Russ. Chem. B+, 2001, vol. 50, p. 1811.

    Article  CAS  Google Scholar 

  9. Zhang, Y., Luo, H.Q., and Li, N.B., Hydrogen peroxide sensor based on Prussian blue electrodeposited on (3-mercaptopropyl)-trimethoxysilane polymer-modified gold electrode, Bioproc. Biosyst. Eng., 2011, vol. 34, p. 215.

    Article  Google Scholar 

  10. Razmi, H., Mohammad-Rezaei, R., and Heidari, H., Self-assembled Prussian blue nanoparticles based electrochemical sensor for high sensitive determination of H2O2 in acidic media, Electroanal., 2009, vol. 21, p. 2355.

    Article  CAS  Google Scholar 

  11. Jia, F.L., Yu, C.F., Gong, J.M., and Zhang, L.Z., Deposition of Prussian blue on nanoporous gold film electrode and its electrocatalytic reduction of H2O2, J. Solid State Electr., 2008, vol. 12, p. 1567.

    Article  CAS  Google Scholar 

  12. Neff, V.D., Electrochemical oxidation and reduction of thin-films of Prussian blue, J. Electrochem. Soc., 1978, vol. 125, p. 886.

    Article  CAS  Google Scholar 

  13. Karyakin, A.A., Puganova, E.A., Budashov, I.A., Kurochkin, I.N., Karyakina, E.E., Levchenko, V.A., and Matveyenko, V.N., Prussian blue based nanoelectrode arrays for H2O2 detection, Anal. Chem., 2004, vol. 76, p. 474.

    Article  CAS  Google Scholar 

  14. Guo, Y.Z., Guadalupe, A.R., Resto, O., Fonseca, L.F., and Weisz, S.Z., Chemically derived Prussian blue sol–gel composite thin films, Chem. Mater., 1999, vol. 11, p. 135.

    Article  CAS  Google Scholar 

  15. Luo, X.L., Morrin, A., Killard, A.J., and Smyth, M.R., Application of nanoparticles in electrochemical sensors and biosensors, Electroanal., 2006, vol. 18, p. 319.

    Article  CAS  Google Scholar 

  16. Zolotukhina, E.V., Bezverkhyy, I.S., and Vorotyntsev, M.A., One-stage periodical anodic-cathodic double pulse deposition of nanocomposite materials. Application to Prussian blue/polypyrrole film coated electrodes, Electrochim. Acta, 2014, vol. 122, p. 247.

    Article  CAS  Google Scholar 

  17. Bowden, N., Terfort, A., Carbeck, J., and Whitesides, G.M., Self-assembly of mesoscale objects into ordered two-dimensional arrays, Science, 1997, vol. 276, p. 233.

    Article  CAS  Google Scholar 

  18. Silva, W.C., Guix, M., Angeles, G.A., and Merkoci, A., Compact microcubic structures platform based on selfassembly Prussian blue nanoparticles with highly tuneable conductivity, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15505.

    Article  CAS  Google Scholar 

  19. Schmidt, D.J., Cebeci, F.C., Kalcioglu, Z.I., Wyman, S.G., Ortiz, C., Van Vliet, K.J., and Hammond, P.T., Electrochemically controlled swelling and mechanical properties of a polymer nanocomposite, ACS Nano, 2009, vol. 3, p. 2207.

    Article  CAS  Google Scholar 

  20. Lundgren, C.A. and Murray, R.W., Observations on the composition of Prussian blue films and their electrochemistry, Inorg. Chem., 1988, vol. 27, p. 933.

    Article  CAS  Google Scholar 

  21. Cederquist, K.B., Golightly, R.S., and Keating, C.D., Molecular beacon-metal nanowire interface: Effect of probe sequence and surface coverage on sensor performance, Langmuir, 2008, vol. 24, p. 9162.

    Article  CAS  Google Scholar 

  22. O’Halloran, M.P., Pravda, M., and Guilbault, G.G., Prussian blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors, Talanta, 2001, vol. 55, p. 605.

    Article  Google Scholar 

  23. Gonzalez, G.L.D., Kahlert, H., and Scholz, F., Catalytic reduction of hydrogen peroxide at metal hexacyanoferrate composite electrodes and applications in enzymatic analysis, Electrochim. Acta, 2007, vol. 52, p. 1968.

    Article  Google Scholar 

  24. Itaya, K., Ataka, T., and Toshima, S., Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes, J. Am. Chem. Soc., 1982, vol. 104, p. 4767.

    Article  CAS  Google Scholar 

  25. Ricci, F., Amine, A., Tuta, C.S., Ciucu, A.A., Lucarelli, F., Palleschi, G., and Moscone, D., Prussian blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability, Anal. Chim. Acta, 2003, vol. 485, p. 111.

    Article  CAS  Google Scholar 

  26. Christensen, P.A., Hamnett, A., and Trevellick, P.R., In situ Infrared Studies in Electrochemistry, J. Electroanal. Chem., 1988, vol. 242, p. 23.

    Article  CAS  Google Scholar 

  27. Pons, S., Datta, M., Mcaleer, J.F., and Hinman, A.S., Infrared spectroelectrochemistry of the Fe(CN)6 4-/Fe(CN)6 3- redox system, J. Electroanal. Chem., 1984, vol. 160, p. 369.

    Article  CAS  Google Scholar 

  28. Oslonovitch, J., Li, Y.J., Donner, C., and Krischer, K., The charge Fe(CN)6 4-/Fe(CN)6 3- transfer reaction on Au(111) revisited in the presence and absence of a twodimensional, condensed organic film, J. Electroanal. Chem., 2003, vol. 541, p. 163.

    Article  CAS  Google Scholar 

  29. Pharr, C.M. and Griffiths, P.R., Infrared spectroelectrochemical analysis of adsorbed hexacyanoferrate species formed during potential cycling in the ferrocyanide/ferricyanide redox couple, Anal. Chem., 1997, vol. 69, p. 4673.

    Article  CAS  Google Scholar 

  30. Kunimatsu, K., Shigematsu, Y., Uosaki, K., and Kita, H., Study of the Fe(CN)6 4-/Fe(CN)6 3- redox system on Pt by Emirs. 1. Infrared-spectra of the intermediates in the charge-transfer, J. Electroanal. Chem., 1989, vol. 262, p. 195.

    Article  CAS  Google Scholar 

  31. Zhang, D., Zhang, K., Yao, Y.L., Xia, X.H., and Chen, H.Y., Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction, Langmuir, 2004, vol. 20, p. 7303.

    Article  CAS  Google Scholar 

  32. Wang, S.X., Zhou, Y., Niu, H., and Zhang, X.Z., Layer-by-Layer self-assembly of polyaspartate and poly(ethyleneimine) on magnetic nanoparticles: Characterization and adsorption of protein, Curr. Appl. Phys., 2011, vol. 11, p. 1337.

    Article  Google Scholar 

  33. Lvov, Y., Ariga, K., Ichinose, I., and Kunitake, T., Assembly of multicomponent protein films by means of electrostatic Layer-by-Layer adsorption, J. Am. Chem. Soc., 1995, vol. 117, p. 6117.

    Article  CAS  Google Scholar 

  34. Schneider, G. and Decher, G., From functional core/shell nanoparticles prepared via Layer-by-Layer deposition to empty nanospheres, Nano Lett., 2004, vol. 4, p. 1833.

    Article  CAS  Google Scholar 

  35. Winkler, J.R. and Gray, H.B., Long-range electron tunneling, J. Am. Chem. Soc. 2014, vol. 136, p. 2930.

    Article  CAS  Google Scholar 

  36. Chi, Q.J., Zhang, J.D., Andersen, J.E.T., and Ulstrup, J., Ordered assembly and controlled electron transfer of the blue copper protein azurin at gold (111) single-crystal substrates, J. Phys. Chem. B, 2001, vol. 105, p. 4669.

    Article  CAS  Google Scholar 

  37. Avila, A., Gregory, B.W., Niki, K., and Cotton, T.M., An electrochemical approach to investigate gated electron transfer using a physiological model system: Cytochrome c immobilized on carboxylic acid-terminated alkanethiol self-assembled monolayers on gold electrodes, J. Phys. Chem. B, 2000, vol. 104, p. 2759.

    Article  CAS  Google Scholar 

  38. Wei, J.J., Liu, H.Y., Khoshtariya, D.E., Yamamoto, H., Dick, A., and Waldeck, D.H., Electron-transfer dynamics of cytochrome C: A change in the reaction mechanism with distance, Angew. Chem. Int. Edit., 2002, vol. 41, p. 4700.

    Article  CAS  Google Scholar 

  39. Khoshtariya, D.E., Wei, J.J., Liu, H.Y., Yue, H.J., and Waldeck, D.H., Charge-transfer mechanism for cytochrome c adsorbed on nanometer thick films. Distinguishing frictional control from conformational gating, J. Am. Chem. Soc., 2003, vol. 125, p. 7704.

    Article  CAS  Google Scholar 

  40. Murgida, D.H. and Hildebrandt, P., Electron-transfer processes of cytochrome c at interfaces. New insights by surface-enhanced resonance Raman spectroscopy, Acc. Chem. Res., 2004, vol. 37, p. 854.

    Article  CAS  Google Scholar 

  41. Jeuken, L.J.C., McEvoy, J.P., and Armstrong, F.A., Insights into gated electron-transfer kinetics at the electrode-protein interface: A square wave voltammetry study of the blue copper protein azurin, J. Phys. Chem. B, 2002, vol. 106, p. 2304.

    Article  CAS  Google Scholar 

  42. Armstrong, F.A., Barlow, N.L., Burn, P.L., Hoke, K.R., Jeuken, L.J.C., Shenton, C., and Webster, G.R., Fast, long-range electron-transfer reactions of a “blue” copper protein coupled non-covalently to an electrode through a stilbenyl thiolate monolayer, Chem. Commun., 2004, vol. 3, p. 316.

    Article  Google Scholar 

  43. Khoshtariya, D.E., Dolidze, T.D., Shushanyan, M., Davis, K.L., Waldeck, D.H., and van Eldik, R., Fundamental signatures of short-and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions, P. Natl. Acad. Sci. USA, 2010, vol. 107, p. 2757.

    Article  CAS  Google Scholar 

  44. Jensen, P.S., Chi, Q., Grumsen, F.B., Abad, J.M., Horsewell, A., Schiffrin, D.J., and Ulstrup, J., Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer, J. Phys. Chem. C, 2007, vol. 111, p. 6124.

    Article  CAS  Google Scholar 

  45. Imabayashi, S., Mita, T., and Kakiuchi, T., Effect of the electrostatic interaction on the Redox reaction of positively charged cytochrome c adsorbed on the negatively charged surfaces of acid-terminated alkanethiol monolayers on a Au(111) electrode, Langmuir, 2005, vol. 21, p. 1470.

    Article  CAS  Google Scholar 

  46. Chi, Q.J., Farver, O., and Ulstrup, J., Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance, P. Natl. Acad. Sci. USA, 2005, vol. 102, p. 16203.

    Article  CAS  Google Scholar 

  47. Zhang, J.D., Christensen, H.E.M., Ooi, B.L., and Ulstrup, J., In situ STM imaging and direct electrochemistry of Pyrococcus furiosus ferredoxin assembled on thiolate-modified Au(111) surfaces, Langmuir, 2004, vol. 20, p. 10200.

    Article  CAS  Google Scholar 

  48. Welinder, A.C., Zhang, J., Hansen, A.G., Moth-Poulsen, K., Christensen, H.E.M., Kuznetsov, A.M., Bjørnholm, T., and Ulstrup, J., Voltammetry and electrocatalysis of achrornobacter xylosoxidans copper nitrite reductase on functionalized Au(111)-electrode surfaces, Z. Phys. Chem., 2007, vol. 221, p. 1343.

    Article  CAS  Google Scholar 

  49. Climent, V., Zhang, J.D., Friis, E.P., Østergaard, L.H., and Ulstrup, J., Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes, J. Phys. Chem. C, 2012, vol. 116, p. 1232.

    Article  CAS  Google Scholar 

  50. Zhu, N., Hao, X., Ulstrup, J., and Chi, Q.J., Singlenanoparticle resolved biomimetic long-range electron transfer and electrocatalysis of mixed-valence nanoparticles, ACS Catal., 2016, vol. 6, p. 2728.

    Article  CAS  Google Scholar 

  51. Zhu, N., Ulstrup, J., and Chi, Q.J., Surface self-assembled hybrid nanocomposites with electroactive nanoparticles and enzymes confined in a polymer matrix for controlled electrocatalysis, J. Mater. Chem. B, 2015, vol. 3, p. 8133.

    Google Scholar 

  52. Kaliginedi, V., Rudnev, A.V., Moreno-Garcia, P., Baghernejad, M., Huang, C.C., Hong, W.J., and Wandlowski, T., Promising anchoring groups for single-molecule conductance measurements, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 23529.

    Article  CAS  Google Scholar 

  53. Zhang, Q., Liu, L., Tao, S., Wang, C., Zhao, C., González, C., Dappe, Y.J., Nichols, R.J., and Yang, L., Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions, Nano Lett., 2016, vol. 16, p. 6534.

    Article  CAS  Google Scholar 

  54. Gotoh, A., Uchida, H., Ishizaki, M., Satoh, T., Kaga, S., Okamoto, S., Ohta, M., Sakamoto, M., Kawamoto, T., Tanaka, H., Tokumoto, M., Hara, S., Shiozaki, H., Yamada, M., Miyake, M., and Kurihara, M., Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues, Nanotechnology, 2007, vol. 18, p. 345609.

    Article  Google Scholar 

  55. Chi, Q.J., Zhang, J.D., Arslan, T., Borg, L., Pedersen, G.W., Christensen, H.E.M., Nazmudtinov, R.R., and Ulstrup, J., Approach to interfacial and intramolecular electron transfer of the diheme protein cytochrome c(4) assembled on Au(111) surfaces, J. Phys. Chem. B, 2010, vol. 114, p. 5617.

    Article  CAS  Google Scholar 

  56. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 1979, vol. 101, p. 19.

    Article  CAS  Google Scholar 

  57. Jensen, P.S., Chi, Q.J., Zhang, J.D., and Ulstrup, J., Long-range interfacial electrochemical electron transfer of Pseudomonas aeruginosa azurin-gold nanoparticle hybrid systems, J. Phys. Chem. C, 2009, vol. 113, p. 13993.

    Article  CAS  Google Scholar 

  58. Kuznetsov, A.M. and Ulstrup, J., Electron Transfer in Chemistry and Biology: An Introduction to the Theory, Chichester, UK and New York, UK: John Wiley and Sons Ltd., 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Ulstrup.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 10, pp. 1359–1378.

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, N., Ulstrup, J. & Chi, Q. Long-range interfacial electron transfer and electrocatalysis of molecular scale Prussian Blue nanoparticles linked to Au(111)-electrode surfaces by different chemical contacting groups. Russ J Electrochem 53, 1204–1221 (2017). https://doi.org/10.1134/S1023193517100159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517100159

Keywords

Navigation