Skip to main content
Log in

Charge state and activity of Pt/C catalysts in oxygen reduction reaction

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical experiments with a rotating disk electrode are used to measure specific catalytic activity of Pt/C structures in the oxygen reduction reaction at the density of Pt nanoparticles on the glassy carbon support surface below one monolayer. The specific activity maximum is found at the coverage of about 0.4 monolayer. An explanation of the observed dependence is suggested that is based on consideration of the relationship between the surface density and charge state of the system of metallic catalyst particles. A numeric model is developed that describes charge transfer in the catalyst structure due to the difference in the work functions between the metal nanoparticles and support with account for the discrete nature of the nanoparticle charging and their mutual polarization. Calculations show that the carbon support coverage by Pt particles of about 0.4 monolayer corresponds to the largest amount of charged particles with the maximum energy of electrons, which provides the maximum catalyst activity and explains the dependence observed in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Revankar, S.T. and Majumdar, P., Fuel Cells: Principles, Design, and Analysis, CRC Press, 2014.

    Google Scholar 

  2. Ferreira, R.B., Falcao, D.S., Oliveira, V.B., and Pinto, A.M.F.R., J. Power Sources, 2015, vol. 277, p. 329.

    Article  CAS  Google Scholar 

  3. Shao, M., Chang, Q., Dodelet, J.-P., and Chenitz, R., Chem. Rev., 2016, vol. 116, p. 3594.

    Article  CAS  Google Scholar 

  4. Greeley, J., Stephens, I.E.L., Bondarenko, A.S., Johansson, T.P., Hansen, H.A., Jaramillo, T.F., Rossmeisl, J., Chorkendorff, I., and Nørskov, J.K., Nature Chem., 2009, vol. 1, p. 552.

    Article  CAS  Google Scholar 

  5. Kuttiyiel, K.A., Choi, Y.M., Hwang, S.-M., Park G.-G., Yang, T.-H., Su, D., Sasaki, K., Liu, P., and Adzic, R.R., Nano Energy, 2015, vol. 13, p. 442.

    Article  CAS  Google Scholar 

  6. Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M., Chi, M., More, K.L., Li, Y., Markovic, N.M., Somorjai, G.A., Yang, P., and Stamenkovic, V.R., Science, 2014, vol. 343, p. 1339.

    Article  CAS  Google Scholar 

  7. Stephens, I.E.L., Bondarenko, A.S., Grønbjerg, U., Rossmeisl, J., and Chorkendorff, I., Energy Environ. Sci., 2012, vol. 5, p. 6744.

    Article  CAS  Google Scholar 

  8. Fuhrmann, J., Zhao, H., Langmach, H., Seidel, Y.E., Jusys, Z., and Behm, R.J., Fuel Cells, 2011, vol. 11, p. 501.

    Article  CAS  Google Scholar 

  9. Nesselberger, M., Roefzaad, M., Hamou, R.F., Biedermann, P.U., Schweinberger, F.F., Kunz, S., Schloegl, K., Wiberg, G.K.H., Ashton, S., Heiz, U., Mayrhofer, K.J.J., and Arenz, M., Nat. Mater., 2013, vol. 12, p. 919.

    Article  CAS  Google Scholar 

  10. Karlberg, G.S., Rossmeisl, J., and Nørskov, J.K., Phys. Chem. Chem. Phys., 2007, vol. 9, p. 5158.

    Article  CAS  Google Scholar 

  11. Kozhevin, V.M., Yavsin, D.A., Kouznetsov, V.M., Busov, V.M., Mikushkin, V.M., Nikonov, S.Yu., Gurevich, S.A., and Kolobov, A., J. Vac. Sci. Technol., B, 2000, vol. 18, p. 1402.

    Article  CAS  Google Scholar 

  12. Grigoriev, A.I. and Shiriaeva, S.O., J. Phys. D: Appl. Phys., 1990, vol. 23, p. 1361.

    Article  Google Scholar 

  13. Rostovshchikova, T.N., Smirnov, V.V., Kozhevin, V.M., Yavsin, D.A., Zabelin, M.A., Yassievich, I.N., and Gurevich, S.A., Appl. Catal., A, 2005, vol. 296, p. 70.

    Article  CAS  Google Scholar 

  14. Gurevich, S.A., Kozhevin, V.M., Yassievich, I.N., Yavsin, D.A., Rostovshchikova, T.N., and Smirnov, V.V., Thin Films and Nanostructures, Physic-Chemical Phenomena in Thin Films and at Solid Surfaces, Amsterdam: Elsevier, 2007, vol. 34.

  15. Zhang, Y., Pluchery, O., Caillard, L., Lamic-Humblot, A.-F., Casale, S., Chabal, Y.J., and Salmeron, M., Langmuir, 2013, vol. 29, p. 1634.

    Article  Google Scholar 

  16. Rostovshchikova, T.N., Lokteva, E.S., Nikolaev, S.A., Golubina, E.V., Gurevich, S.A., Kozhevin, V.M., Yavsin, D.A., and Lunin, V.V., Catalysis: Principles, Types and Applications, New York Nova Sci. Publ., 2011.

    Google Scholar 

  17. Abeles, B., Sheng, P., Coutts, M.D., and Arie, Y., Adv. Phys., 1975, vol. 24, p. 407.

    Article  CAS  Google Scholar 

  18. Il’yushchenkov, D.S., Kozhevin, V.M., and Gurevich, S.A., Fiz. Tverd. Tela, 2015, vol. 57, p. 1670.

    Google Scholar 

  19. Fomenko, V.S., Handbook of Thermionic Properties, New York Plenum Press, 1966.

    Book  Google Scholar 

  20. David, G., Hall, D.G., and Cole, R.H., J. Phys. Chem., 1981, vol. 85, p. 1065.

    Article  Google Scholar 

  21. Bennet, A.J. and Duke, C.B., Phys. Rev., 1967, vol. 160, p. 541.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gurevich.

Additional information

Original Russian Text © S.A. Gurevich, D.S. Il’yushchenkov, D.A. Yavsin, N.V. Glebova, A.A. Nechitailov, N.K. Zelenina, A.A. Tomasov, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 6, pp. 642–650.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurevich, S.A., Il’yushchenkov, D.S., Yavsin, D.A. et al. Charge state and activity of Pt/C catalysts in oxygen reduction reaction. Russ J Electrochem 53, 567–574 (2017). https://doi.org/10.1134/S1023193517060052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517060052

Keywords

Navigation