Skip to main content
Log in

Pt(Cu)/C Electrocatalysts with Low Platinum Content

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The structure characteristics and the electrochemical behavior of Pt(Cu)/C electrocatalysts synthesized by consecutive deposition of copper and platinum on carbon-support microparticles is studied. The stability and catalytic activity of Pt(Cu)/C materials in reactions of oxygen electroreduction and methanol electrooxidation are assessed and compared with analogous characteristics of a commercial Pt/C material. It is shown that combining the method of galvanic displacement of Cu by Pt with the additional chemical deposition of Pt favors optimization of the structure and functional characteristics of Pt(Cu)/C electrocatalysts. The effect of thermal treatment on the characteristics and properties of electrocatalysts is studied and the optimal conditions of such pretreatment are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv, H., Li, D., Strmcnik, D., Paulikas, A.P., Markovic, N.M., and Stamenkovic, V.R., Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction, Nano Energy, 2016, vol. 29, p.149.

    Article  CAS  Google Scholar 

  2. Stamenkovic, V.R., Mun, B.S., Arenz, M., Mayrhofer, K.J.J., Lucas, C.A., Wang, G., Ross P.N., and Markovic, N.M., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater., 2007, vol. 6, p.241.

    Article  CAS  Google Scholar 

  3. Oezaslan, M., Hasche, F., and Strasser, P., Pt-Based core–shell catalyst architectures for oxygen fuel cell electrodes, J. Phys. Chem. Lett., 2013, vol. 4, p. 3273.

    Article  CAS  Google Scholar 

  4. Ge, X., Chen, L., Kang, J., Fujita, T., Hirata, A., Zhang, W., Jiang, J., and Chen, M., A core–shell nanoporous Pt–Cu catalyst with tunable composition and high catalytic activity, Adv. Funct. Mater, 2013, vol. 23, p. 4156.

    Article  CAS  Google Scholar 

  5. Ammam, M. and Easton, E.B., PtCu/C and Pt(Cu)/C catalysts: Synthesis, characterization and catalytic activity towards ethanol electrooxidation, J. Power Sources, 2013, vol. 222, p.79.

    Article  CAS  Google Scholar 

  6. Luo, M., Wei, L., Wang, F., Han, K., and Zhu, H., Gram-level synthesis of core–shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells, J. Power Sources, 2014, vol. 270, p.34.

    Article  CAS  Google Scholar 

  7. Thompsett, D., Catalysts for the proton exchange membrane fuel cell, in Handbook of Fuel Cells. Fundamentals, Technology and Applications, Vol. 3, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds., Chichester (UK): Wiley, 2003.

    Google Scholar 

  8. Lv, Q., Chang, J., Xing, W., and Liu, Ch., Dispersioncontrolled PtCu clusters synthesized with citric acid using galvanic displacement with high electrocatalytic activity toward methanol oxidation, RSC Adv., 2014, vol. 4, p. 32997.

    Article  CAS  Google Scholar 

  9. Xu, C., Liu, Yu., Wang, J., Geng, H., and Qiu, H., Fabrication of nanoporous Cu–Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4626.

    Article  CAS  PubMed  Google Scholar 

  10. Ou, L., The origin of enhanced electrocatalytic activity of Pt–M (M = Fe, Co, Ni, Cu, and W) alloys in PEM fuel cell cathodes: A DFT computational study, Comput. Theor. Chem., 2014, vol. 1048, p.69.

    Article  CAS  Google Scholar 

  11. Yang, H., Platinum-based electrocatalysts with core–shell nanostructures, Angew. Chem., Int. Ed., 2011, vol. 50, p. 2674.

    Article  CAS  Google Scholar 

  12. Singh, R.N., Awasthi, R., and Sharma, C.S., Review: An overview of recent development of platinum-based cathode materials for direct methanol fuel cells, Int. J. Electrochem. Sci., 2014, vol. 9, p. 5607.

    Google Scholar 

  13. Guterman, V.E., Belenov, S.V., Pakharev, A.Yu., Min, M., Tabachkova, N.Yu., Mikheykina, E.B., Vysochina, L.L., and Lastovina, T.A., Pt–M/C (M = Cu, Ag) electrocatalysts with an inhomogeneous distribution of metals in the nanoparticles, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1609.

    Article  CAS  Google Scholar 

  14. Zhu, H., Li, X., and Wang, F., Synthesis and characterization of Cu@Pt/C core–shell structured catalysts for proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 9151.

    Article  CAS  Google Scholar 

  15. Lin, R., Zhao, T., Shang, M., Wang, J., Tang, W., Guterman, V., and Ma, J., Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell, J. Power Sources, 2015, vol. 293, p.274.

    Article  CAS  Google Scholar 

  16. Sarkar, A. and Manthiram, A., Synthesis of Pt@Cu core–shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells, J. Phys. Chem. C, 2010, vol. 114, p. 4725.

    Article  CAS  Google Scholar 

  17. Bezerra, C.W.B., Zhang, L., Liu, H., Lee, K., Marqués, A.L.B., Marques, E.P., Wang, H., and Zhang, J., A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction, J. Power Sources, 2007, vol. 173, p.891.

    Article  CAS  Google Scholar 

  18. Valisi, A.N., Maiyalagan, T., Khotseng, L., Linkov, V., and Pasupathi, S., Effects of heat treatment on the catalytic activity and methanol tolerance of carbon-supported platinum alloys, Electrocatalysis, 2012, vol. 3, p.108.

    Article  CAS  Google Scholar 

  19. Carbonio, E.A., Colmati, F., Ciapina, E.G., Pereira, M.E., and Gonzalez, E.R., Pt–Cu/C and Pd modified Pt–Cu/C electrocatalysts for the oxygen reduction reaction in direct methanol fuel cells, J. Braz. Chem. Soc., 2010, vol. 21, p.590.

    Article  CAS  Google Scholar 

  20. Yu, F. and Zhou, W., Alloying and dealloying of CuPt bimetallic nanocrystals, Progr. Nat. Sci.: Mater. Intern., 2013, vol. 23, p.331.

    Article  CAS  Google Scholar 

  21. Zhang, J., Ma, J., Wan, Y., Jiang, J., and Zhao, X.S., Dendritic Pt–Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation, Mater. Chem. Phys., 2012, vol. 132, p.244.

    Article  CAS  Google Scholar 

  22. Chandran, R. and Dharmalingam, S., Facile synthesis and characterization of PtCu core–shell and alloy nanoparticles, Nanosci. Nanotechnol., 2014, vol. 14, p.1.

    Article  CAS  Google Scholar 

  23. Marcu, T.G., Srivastava, R., and Strasser, P., Preparation, characterization and degradation mechanisms of PtCu alloy nanoparticles for automotive fuel cells, J. Power Sources, 2012, vol. 208, p.288.

    Article  CAS  Google Scholar 

  24. Ge, X., Chen, L., Kang, J., Fujita, T., Hirata, A., Zhang, W., Jiang, J., and Chen, M., A core–shell nanoporous Pt–Cu catalyst with tunable composition and high catalytic activity, Adv. Funct. Mater, 2013, vol. 23, p. 4156.

    Article  CAS  Google Scholar 

  25. Zhang, J., Ma J., Wan, Y., Jiang, J., and Zhao, X.S., Dendritic Pt–Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation, Mater. Chem. Phys., 2012, vol. 132, p.244.

    Article  CAS  Google Scholar 

  26. Wang, Y., Zhou, H., Sun, P., and Chen, T., Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts, J. Power Sources, 2014, vol. 245, p.663.

    Article  CAS  Google Scholar 

  27. Alekseenko, A.A., Belenov, S.V., Volochaev, V.A., Novomlinskiy, I.N., and Guterman, V.E., Cu@Pt/C catalysts: synthesis, structure, activity in oxygen reduction reaction, Kondens. Sredy Mezhfaznye Granitsy, 2016, vol. 18, p.460.

    CAS  Google Scholar 

  28. Kirakosyan, S.A., Alekseenko, A.A., Guterman, V.E., Volochaev, V.A., and Tabachkova, N.Yu., Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts, Nanotechnol. Russ., 2016, vol. 11, p.287.

    Article  CAS  Google Scholar 

  29. Van der Vliet, D., Strmcnik, D.S., Wang, C., Stamenkovic, V.R., Markovic, N.M., and Koper, M.T.M., On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the oxygen reduction reaction, J. Electroanal. Chem., 2010, vol. 647, p.29.

    Article  CAS  Google Scholar 

  30. Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., and Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness, J. Electrochem. Soc., 2015, vol. 162, p. F1384.

    Article  CAS  Google Scholar 

  31. Khudhayer, W.J., Kariuki, N.N., Wang, X., Myers, D.J., Shaikh, A.U., and Karabacak, T., Oxygen reduction reaction electrocatalytic activity of glancing angle deposited platinum nanorod arrays, J. Electrochem. Soc., 2011, vol. 158, p. B1029.

    Article  CAS  Google Scholar 

  32. Gasteiger, H.A., Kocha, Sh.S., Sompalli, B., and Wagner, F.T., Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl. Catal., B, 2005, vol. 56, p.9.

    Article  CAS  Google Scholar 

  33. Pryadchenko, V.V., Srabionyan, V.V., Belenov, S.V., Volochaev, V.A., Kurzin, A.A., Avakyan, L.A., Zizak, I., Guterman, V.E., and Bugaev, L.A., Bimetallic PtCu nanoparticles in PtCu/C electrocatalysts: structural and electrochemical characterization, Appl. Catal., A, 2016, vol. 525, p.226.

    Article  CAS  Google Scholar 

  34. Valisi, A.N., Maiyalagan, T., Khotseng, L., Linkov, V., and Pasupathi, S., Effects of heat treatment on the catalytic activity and methanol tolerance of carbon-supported platinum alloys, Electrocatalysis, 2012, vol. 3, p.108.

    Article  CAS  Google Scholar 

  35. Shao-Horn, Y., Sheng, W.C., Chen, S., Ferreira, P.J., Holby, E.F., and Morgan, D., Instability of supported platinum nanoparticles in low-temperature fuel cells, Top. Catal., 2007, vol. 46, p.285.

    Article  CAS  Google Scholar 

  36. Guterman, V.E., Belenov, S.V., Alekseenko, A.A., Tabachkova, N.Yu., and Volochaev, V.A., The relationship between activity and stability of deposited platinum–carbon electrocatalysts, Russ. J. Electrochem., 2017, vol. 53, p.531.

    Article  CAS  Google Scholar 

  37. Iwasita, T., Electrocatalysis of methanol oxidation, Electrochim. Acta, 2002, vol. 47, p. 3663.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Alekseenko.

Additional information

Original Russian Text © A.A. Alekseenko, S.V. Belenov, V.S. Menshikov, V.E. Guterman, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 5, pp. 477–488.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseenko, A.A., Belenov, S.V., Menshikov, V.S. et al. Pt(Cu)/C Electrocatalysts with Low Platinum Content. Russ J Electrochem 54, 415–425 (2018). https://doi.org/10.1134/S1023193518050026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518050026

Keywords

Navigation