Skip to main content
Log in

Polyaniline nanowire arrays on reductive graphene oxide sheets with synergistic effect for supercapacitor

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, oriented arrays of polyaniline (PANI) nanowires were fabricated on the surface of hierarchical graphene oxide (GO) nanosheets by in situ polymerization method. Then the GO was reduced to be graphene, the graphene/polyaniline (rGO-PANI) nanocomposites were obtained. After that, electrochemical properties of the rGO-PANI nanocomposites were well studied. The results showed that the rGO-PANI nanocomposites exhibited significant charge-discharge reversibility and electrochemical stability. It is more important that, compared with GO-PANI, the rGO-PANI nanocomposites generated much higher conductivity value and electrochemical capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abalyaeva, V.V., Baskakov, S.A., and Dremova, N.N., Russ. J. Electrochem., 2015, vol. 51, p. 916.

    Article  CAS  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 306, p. 666.

    Article  CAS  Google Scholar 

  3. Chen, G.L., Shau, S.M., Juang, T.Y., Lee, R.H., Chen, C.P., Suen, S.Y., and Jeng, R.J., Langmuir, 2011, vol. 27, p. 14563.

    Article  CAS  Google Scholar 

  4. Liu, Y., Deng, R.J., Wang, Z., and Liu, H.T., J. Mater. Chem., 2012, vol. 27, p. 13619.

    Article  Google Scholar 

  5. Abalyaeva, V.V., Baskakov, S.A., and Dremova, N.N., Russ. J. Electrochem., 2015, vol. 51, p. 976.

    Article  CAS  Google Scholar 

  6. Li, Y., Zhao, Y., Cheng, H.H., Hu, Y., Shi, G.Q., and Dai, L.M., J. Am. Chem. Soc., 2012, vol. 134, p. 15.

    Article  CAS  Google Scholar 

  7. Hsiao, M.C., Liao, S.H., Yen, M.Y., Liu, P.I., Pu, N.W., Wang, C.A., and Ma, C.C., ACS Appl. Mater. Inter., 2010, vol. 2, p. 3092.

    Article  CAS  Google Scholar 

  8. Yu, Z., Duong, B., Abbitt, D., and Thomas, J., Adv. Mater., 2013, vol. 10, p. 1.

    CAS  Google Scholar 

  9. Li, G.R., Feng, Z.P., Zhong, J.H., Wang, Z.L., and Tong, Y.X., Macromolecules, 2010, vol. 43, p. 2178.

    Article  CAS  Google Scholar 

  10. Peng, H., Ma, G.F., Ying, W.M., Wang, A.D., Huang, H.H., and Lei, Z.Q., J. Power. Sources, 2012, vol. 211, p. 40.

    Article  CAS  Google Scholar 

  11. Huang, Y.F. and Lin, C.W., Polymer, 2012, vol. 53, p. 2574.

    Article  CAS  Google Scholar 

  12. Chatterjee, S., Layek, R.K., and Nandi, A.K., Carbon, 2013, vol. 52, p. 509.

    Article  CAS  Google Scholar 

  13. Zhang, Q.Q., Li, Y., Feng, Y.Y., and Feng, W., Electrochim. Acta, 2013, vol. 90, p. 95.

    Article  CAS  Google Scholar 

  14. Gao, Z., Yang, W.L., Wang, Y., Yan, H.J., Yao, Y., Ma, J., Wang, B., Zhang, M.L., and Liu, L.H., Electrochim. Acta, 2013, vol. 91, p. 185.

    Article  CAS  Google Scholar 

  15. Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  CAS  Google Scholar 

  16. Wu, Q., Xu, Y.X., Yao, Z.Y., Liu, A.R., and Shi, G.Q., ACS Nano, 2010, vol. 4, p. 1963.

    Article  CAS  Google Scholar 

  17. Gao, Z., Yang, W.L., Wang, J., Wang, B., Li, Z.S., Liu, Q., Zhang, M.L., and Liu, L.H., Energy Fuel., 2013, vol. 27, p. 568.

    Article  CAS  Google Scholar 

  18. Shulga, Y.M., Baskakov, S.A., Abalyaeva, V.V., Efimov, O.N., Shulga, N.Y., and Michtchenko, A., J. Power. Sources, 2013, vol. 224, p. 195.

    Article  CAS  Google Scholar 

  19. Cong, H.P., Ren, X.C., Wang, P., and Yu, S.H., Energy Environ. Sci., 2013, vol.6, p.1185.

    Article  CAS  Google Scholar 

  20. Taberna, P.L., Mitra, S., Poizot, P., Simon, P., and Tarascon, J.M., Nat. Mater., 2006, vol. 5, p. 567.

    Article  CAS  Google Scholar 

  21. Lai, L.F., Huang, G.M., Wang, X.F., and Weng, J., Carbon, 2010, vol. 48, p. 3145.

    Article  CAS  Google Scholar 

  22. Li, Y.Z., Zhao, X., Xu, Q., Zhang, Q.H., and Chen, D.J., Langmuir, 2011, vol. 27, p. 6458.

    Article  CAS  Google Scholar 

  23. Sahoo, S., Bhattacharta, P., Hatui, G., Ghosh. D., and Das, C.K., J. Appl. Polym. Sci., 2013, vol. 128, p. 1476.

    CAS  Google Scholar 

  24. Lin, Y.Z., Zhao, X., Yu, P.P., and Zhang, Q.H., Langmuir, 2013, vol. 29, p. 493.

    Article  Google Scholar 

  25. Zhang, D.C., Zhang, X., Chen, Y., Yu, P., Wang, C.H., and Ma, Y.W., J. Power. Sources, 2011, vol. 196, p. 5990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanghua Zhu.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 2, pp. 165–171.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhu, F., Dai, Y. et al. Polyaniline nanowire arrays on reductive graphene oxide sheets with synergistic effect for supercapacitor. Russ J Electrochem 53, 147–153 (2017). https://doi.org/10.1134/S1023193517020136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517020136

Keywords

Navigation