Skip to main content
Log in

Kinetics of electrodeposition of Ni–ZrO2 nanocomposite coatings from methanesulfonate electrolytes

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Regularities of incorporation of zirconia nanoparticles into a nickel matrix in the course of electrodeposition of Ni–ZrO2 coatings from methanesulfonate electrolyte are established. The content of the dispersed phase in coatings grows at an increase in its concentration in electrolyte. Moreover, nanocomposites containing a greater amount of zirconia are deposited from the methanesulfonate electrolyte as compared to sulfate electrolyte. This is explained by the greater partial concentration of ZrO2 in the solution due to enhanced aggregative stability of the dispersed phase in methanesulfonate electrolyte. The mechanism of formation of the composite coating is considered that is based on the concept of particle incorporation into the metal matrix due to the different rates of metal electrodeposition on the electrode surface free of nonmetallic particles and on the electrode surface conditionally occupied by them. A physically substantiated mathematical model is suggested that describes the kinetics of formation of the composite coating that agrees well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Low, C.T.J., Wills, R.G.A., and Walsh, F.C., Surf. Coat. Technol., 2006, vol. 201, p. 371.

    Article  CAS  Google Scholar 

  2. Sen, R., Bhattacharya, S., Das, S., and Das, K., J. Alloys Compd., 2010, vol. 489, p. 650.

    Article  CAS  Google Scholar 

  3. Zhou, X., Shen, Y., Zheng, Y., and Jin, H., J. Rare Earths, 2011, vol. 29, p. 883.

    Article  CAS  Google Scholar 

  4. Zimmerman, A.F., Palumbo, G., Aust, K.T., and Erb, U., Mater. Sci. Eng., 2002, vol. A328, p. 137.

    Article  CAS  Google Scholar 

  5. Garcia, I., Fransaer, J., and Celis, J.-P., Surf. Coat. Technol., 2001, vol. 148, p. 171.

    Article  CAS  Google Scholar 

  6. Moller, A. and Hahn, H., Nanostruct. Mater., 1999, vol. 12, p. 259.

    Article  Google Scholar 

  7. Huang, J.M., Li, Y., Zhang, G.F., Hou, X.D., and Deng, D.W., Surf. Eng., 2013, vol. 29, no. 3, p. 194.

    Article  CAS  Google Scholar 

  8. Hou, F., Wang, W., and Guo, H., Appl. Surf. Sci., 2006, vol. 252, p. 3812.

    Article  CAS  Google Scholar 

  9. Wang, W., Hou, F.-Y., Wang, H., and Guo, H.-T., Scr. Mater., 2005, vol. 53, p. 613.

    Article  CAS  Google Scholar 

  10. Zanella, C., Lekka, M., and Bonora, P.L., J. Appl. Electrochem., 2009, vol. 39, p. 31.

    Article  CAS  Google Scholar 

  11. Pavlatou, E.A., Stroumbouli, M., Gyftou, P., and Spyrellis, N., J. Appl. Electrochem., 2006, vol. 36, p. 385.

    Article  CAS  Google Scholar 

  12. Gorelov, S.M., Tsupak, T.E., and Yarovaya, O.V., Gal’vanotekh. Obrab. Poverkhn., 2014, vol. 22, p. 32.

    Google Scholar 

  13. Walsh, F.C. and Ponce de Leon, C., Trans. Inst. Met. Finish., 2014, vol. 92, p. 83.

    Article  CAS  Google Scholar 

  14. Pavlatou, E.A. and Spyrellis, N., Russ. J. Electrochem., 2008, vol. 44, p. 745.

    Article  CAS  Google Scholar 

  15. Moller, A. and Hahn, H., Nanostruct. Mater., 1999, vol. 12, p. 259.

    Article  Google Scholar 

  16. Wong, W., Hou, F.-Y., Wang, H., and Guo, H.-T., Scr. Mater., 2005, vol. 53, p. 613.

    Article  Google Scholar 

  17. Huang, J.M., Li, Y., Zhang, G.F., Hou, X.D., and Deng, D.W., Surf. Eng., 2013, vol. 29, p. 194.

    Article  CAS  Google Scholar 

  18. Walsh, F.C. and Ponce de Leon, C., Surf. Coat. Technol., 2014, vol. 259, p. 676.

    Article  CAS  Google Scholar 

  19. Danilov, F.I., Sknar, I.V., and Sknar, Yu.E., Russ. J. Electrochem., 2011, vol. 47, p. 1035.

    Article  CAS  Google Scholar 

  20. Danilov, F.I., Sknar, I.V., and Sknar, Yu.E., Russ. J. Electrochem., 2014, vol. 50, p. 293.

    Article  CAS  Google Scholar 

  21. Danilov, F.I., Tkach, I.G., Sknar, I.V., and Sknar, Yu.E., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 639.

    Article  CAS  Google Scholar 

  22. Konstantinova, T.E., Danilenko, I.A., Tokii, V.V., and Glazunova, V.A., Nauka ta innovatsii, 2005, vol. 1, no. 3, p. 76.

    Article  Google Scholar 

  23. Slipenyuk, A.M., Glinchuk, M.D., Bykov, I.P., Ragulya, A.V., Klimenko, V.P., Konstantinova, T.E., and Danilenko, I.A., Ferroelectrics, 2004, vol. 298, p. 289.

    Article  CAS  Google Scholar 

  24. Konstantinova, T.E., Ragulya, A.V., Doroshkevich, A.S., Volkova, G.K., and Glazunova, V.A., Int. J. Nanotechnol., 2006, vol. 3, no. 1, p. 29.

    Article  CAS  Google Scholar 

  25. Yashchishyn, I.A., Korduban, A.M., Konstantinova, T.E., Danilenko, I.A., Volkova, G.K., Glazunova, V.A., and Kandyba, V.O., Appl. Surf. Sci., 2010, vol. 256, p. 7175.

    Article  CAS  Google Scholar 

  26. Baranova, V.I., Bibik, E.E., Kozhevnikova, N.M., and Malov, V.A., Raschety i zadachi po kolloidnoi khimii (Calculations and Problems in Colloid Chemistry), Moscow: Vysshaya shkola, 1989.

    Google Scholar 

  27. Guglielmi, N., J. Electrochem. Soc., 1972, vol. 119, p. 1009.

    Article  CAS  Google Scholar 

  28. Hwang, B. J. and Hwang, Ch. Sh., J. Electrochem. Soc., 1993, vol. 140, no. 4, p. 979.

    Article  CAS  Google Scholar 

  29. Wang, Sh.-Ch. and Wei, W.-Ch. J., Mater. Chem. Phys., 2003, vol. 78, p. 574.

    Article  CAS  Google Scholar 

  30. Bercot, P., Pena-Munoz, E., and Pagetti, J., Surf. Coat. Technol., 2002, vol. 157, p. 282.

    Article  CAS  Google Scholar 

  31. Celis, J.P., Roos, J.R., and Buelens, C., J. Electrochem. Soc., 1987, vol. 134, p. 1402.

    Article  CAS  Google Scholar 

  32. Vereecken, P.M., Shao, I., and Searson, P.C., J. Electrochem. Soc., 2000, vol. 147, p. 2572.

    Article  CAS  Google Scholar 

  33. Garcia, I., Fransaer, J., and Celis, J.-P., Surf. Coat. Technol., 2001, vol. 148, p. 171.

    Article  CAS  Google Scholar 

  34. Eroglu, D. and West, A.C., J. Electrochem. Soc., 2013, vol. 160, no. 9, p. D354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. I. Danilov.

Additional information

Original Russian Text © F.I. Danilov, Yu.E. Sknar, N.V. Amirulloeva, I.V. Sknar, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 5, pp. 555–560.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, F.I., Sknar, Y.E., Amirulloeva, N.V. et al. Kinetics of electrodeposition of Ni–ZrO2 nanocomposite coatings from methanesulfonate electrolytes. Russ J Electrochem 52, 494–499 (2016). https://doi.org/10.1134/S1023193516050037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516050037

Keywords

Navigation