Skip to main content
Log in

Characteristics of HiSPEC13100-catalyst-based cathode (70Pt/C) for hydrogen–air fuel cell with proton-conducting polymer electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

HiSPEC 13100-monoplatinum-catalyst-based cathode for hydrogen–air (hydrogen–oxygen) fuel cell with proton-conducting polymer membrane is studied. The cathodes of membrane–electrode assemblies with different platinum load were subjected to accelerated stress-tests for the purpose of the revealing of peculiarities of the cathode degrading and its electrochemical parameters’ changing, depending on the platinum load in active layers. The cathodes with lower platinum load were shown to have better characteristics, such as the mass activity and platinum utilization coefficient. However, they are much more prone to degradation and increased transport losses at limiting currents as compared with high-platinum-loaded cathodes. A degradation mechanism is suggested, which basically allows for the platinum nanoparticles coalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrette, L., Friedrichand, K.A., and Stimming, U., Fuel Cells, 2001, vol. 1, p. 5.

    Article  CAS  Google Scholar 

  2. Korovin, N.V., Toplivnye elementy i elektrokhimicheskie energoustanovki (Fuel Cells and Electrochemical Power Plants), Moscow: Izd. MEI, 2005.

    Google Scholar 

  3. Handbook of Fuel Cells–Fundamentals and Applications, vol. 1–4, Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., Chichester, UK: Wiley, 2003.

  4. Avakov, V.B., Agafonkina, M.O., Aliev, A.D., Beketaeva, L.A., Bogdanovskaya, V.A., Ivanitskii, B.A., Kazanskii, L.P., Kapustin, A.V., Korchagin, O.V., Datskevich, A.A., Kuzov, A.V., Landgraf, I.K., Lozo vaya, O.V., Tarasevich, M.R., Tripachev, O.V., and Chalykh, A.E., Abstracts of Papers, Fiziko-khimicheskie problemy vozobnovlyaemoi energetiki, (Physico-Chemical Problems of Renewable Energetics), St. Petersburg, 2012, p. 136.

    Google Scholar 

  5. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Uchimotoy, Z., Yasuda, K., Kimijima, K.I., and Iwashita, N., Chem. Rev., 2007, vol. 107, p. 3904.

    Article  CAS  Google Scholar 

  6. Arisetty, S., Wang, X., Ahluwalia, R.K., Mukundan, R., Borup, R., Davey, J., Langlois, D., Gambini, F., Polevaya, O., and Blanchet, S., J. Electrochem. Soc., 2012, vol. 159, p. B455.

    Article  CAS  Google Scholar 

  7. Avakov, V.B., Beketaeva, L.A., Bogdanovskaya, V.A., Zagudaeva, N.M., Ivanitskii, B.A., Kapustin, A.V., Kuzov, A.V., Landgraf, I.K., Modestov, A.D., Radina, M.V., Stankevich, M.M., and Tarasevich, M.R., Abstracts of Papers, Fiziko-khimicheskie problemy vozobnovlyaemoi energetiki (Physico-Chemical Problems of Renewable Energetics), St. Petersburg, 2013, p. 44.

    Google Scholar 

  8. Ahluwalia, R.K., Wang, X., Kwon, J., Rousseau, A., Kalinoski, J., James, B., and Marcinkoski, J., J. Power Sources, 2011, vol. 196, p. 4619.

    Article  CAS  Google Scholar 

  9. Brace, K.M., Hayden, B.E., Lee, C.E., and Gall, T.L., US Patent 20130130151, 2013.

    Google Scholar 

  10. Lo, M.Y., Chen, Y.C., and Chang, M.Y., US Patent 20130029252, 2013.

  11. Thompset, D., in Handbook of Fuel Cells - Fundamental and Applications, vol. 3, Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., Wiley, 2003, p. 467.

    Google Scholar 

  12. Gasteiger, H., Kocha, S.S., Sompalli, B., and Wagner, F.T., Appl. Catalysis B: Environmental, 2005, vol. 56, p. 9.

    Article  CAS  Google Scholar 

  13. Kristian, N. and Wang, X., Electrochem. Commun., 2008, vol. 10, p. 12.

    Article  CAS  Google Scholar 

  14. Sugawara, Y., Okayasu, T., Yadav, A.P., Nishikata, A., and Tsuru, T., J. Electrochem. Soc., 2012, vol. 159, p. F779.

  15. Hackendorn, R.A. and Virkar, A.V., J. Power Sources, 2013, vol. 240, p. 618.

    Article  CAS  Google Scholar 

  16. Groom, D.J., Rajasekhara, S., Matyas, S., Yang, Z., Gummalla, M., Ball, S., and Ferreira, P.J., ECS Transactions, 2011, vol. 41, no. 1, p. 933.

    Article  CAS  Google Scholar 

  17. Ahluwalia, R.K., Arisetty, S., Peng, J., Subbaraman, R., Wang, X., Kariuki, N., Myers, D.J., Mukundan, R., Borup, R., and Polevaya, O., J. Electrochem. Soc., 2014, vol. 161, p. F291.

    Article  CAS  Google Scholar 

  18. Ziegler, C., Thiele, S., and Zengerle, R., J. Power Sources, 2011, vol. 196, p. 2094.

    Article  CAS  Google Scholar 

  19. Liu, Y., Ji, C., Gu, W., Baker, D.R., Jorne, J., and Gasteiger, H.A., J. Electrochem. Soc., 2010, vol. 157, p. B1154.

    Article  CAS  Google Scholar 

  20. Avakov, V.B., Aliev, A.D., Beketaeva, L.A., Bogdanovskaya, V.A., Burkovskii, E.V., Datskevich, A.A., Ivanitskii, B.A., Kazanskii, L.P., Kapustin, A.V., Korchagin, O.V., and Kuzov, A.V., Landgraf, I.K., Lozo vaya, O.V., Modestov, A.D., Stankevich, M.M., Tarasevich, M.R., and Chalykh, A.E., Russ. J. Electrochem., 2014, vol. 50, p. 773.

    Article  CAS  Google Scholar 

  21. Amphett, J.C., Baumert, R.M., Mann, R.F., Peppley, B.A., Roberge, P.R., and Harris, T.J., J. Electrochem. Soc., 1995, vol. 142, p. 9.

    Article  Google Scholar 

  22. Janssen, G.J.M., Sitters, E.F., and Pfrang, A., J. Power Sources, 2009, vol. 191, p. 501.

    Article  CAS  Google Scholar 

  23. Gasteiger, H.A., Panels, J.E., and Yan, S.G., J. Power Sources, 2004, vol. 127, p. 162.

    Article  CAS  Google Scholar 

  24. Spravochnik khimika (Handbook of Chemistry), vol. 1, Moscow: Khimiya, 1072.

  25. Schmidt, T.J. and Gasteiger, H.A., in Rotating ThinFilm Method for Supported Catalysts, Vielstich, W., Gasteiger, H.A., and Lamm, A.N.Y., Eds., Wiley, 2003, p. 316.

  26. Neyerlin, K.C., Gu, W., Jorne, J., and Gasteiger, H.A., J. Electrochem. Soc., 2006, vol. 153, p. A1955.

    Article  CAS  Google Scholar 

  27. Jomori, S., Nonoyama, N., Yoshida, T., J. Power Sources, 2012, vol. 215, p. 18.

    Article  CAS  Google Scholar 

  28. Ohma, A., Mashio, T., Sato, K., Iden, H., Ono, Y., Sakai, K., Akizuki, K., Takaichi, S., and Shinohara, K., Electrochim. Acta, 2011, vol. 56, p. 10832.

    Article  CAS  Google Scholar 

  29. Subramanian, N.P., Greszler, T.A., Zhang, J., Gu, W., and Makharia, R., J. Electrochem. Soc., 2012, vol. 159, p. B531.

  30. Smoluchowski, M., Ann. Phys. (New York), 1915, vol. 48, p. 1103.

    Google Scholar 

  31. Fuks, N.A., Mekhanika Aerozolei (Mechanics of Aerosols), Izd. AN SSSR, 1955.

    Google Scholar 

  32. Frolov, Yu.G., Kurs kolloidnoi khimii. Poverkhnostnye yavleniya i dispersnye sistemy (of Colloidal Chemistry: Surface Phenomena and Disperse Systems), Moscow: Al’yans, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Stankevich.

Additional information

Original Russian Text © V.B. Avakov, V.A. Bogdanovskaya, V.A. Vasilenko, B.A. Ivanitskii, E.M. Kol’tsova, A.V. Kuzov, A.V. Kapustin, I.K. Landgraf, M.M. Stankevich, M.R. Tarasevich, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 8, pp. 813–825.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avakov, V.B., Bogdanovskaya, V.A., Vasilenko, V.A. et al. Characteristics of HiSPEC13100-catalyst-based cathode (70Pt/C) for hydrogen–air fuel cell with proton-conducting polymer electrolyte. Russ J Electrochem 51, 719–729 (2015). https://doi.org/10.1134/S1023193515080030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515080030

Keywords

Navigation