Skip to main content
Log in

Computer simulation of active layers in the electric double layer supercapacitor: Optimization of active layer charging modes and structure, calculation of overall characteristics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The structure and functioning modes of active layers in an electric double layer capacitor (EDLC) with an aqueous electrolyte are simulated by means of a computer. A model of active layers prepared from activated carbon materials is proposed, percolation estimates are performed and effective ionic conductivities are calculated. The polarization of active layers includes a sequence of two charging processes: first, galvanostatic and then potentiostatic. The proposed program of calculations involves mutual matching and optimization of seven parameters characterizing the active layer and conditions of charging processes. According to calculations, galvanostatic polarization of wide pores in the EDLC biporous active layer up to the limiting potential followed by potentiostatic polarization of fine pores allows the capacity C sp = 246 F/g and the energy W sp = 107 kJ/kg to be obtained in fractions of second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway, B.E., J. Electrochem. Soc., 1991, vol. 138, p. 1539.

    Article  CAS  Google Scholar 

  2. Vol’fkovich, Yu.M. and Serdyuk, T.M., Russ. J. Electrochem., 2002, vol. 38, p. 935.

    Article  Google Scholar 

  3. Pillay, B. and Newman, J., J. Electrochem. Soc., 1996, vol. 143, p. 1806.

    Article  CAS  Google Scholar 

  4. Lin, C., Ritter, J.A., Popov, B.N., and White, R.E., J. Electrochem. Soc., 1999, vol. 146, p. 3168.

    Article  CAS  Google Scholar 

  5. Vol’fkovich, Yu.M., Mazin, V.M., and Urisson, N.A., Russ. J. Electrochem., 1998, vol. 34, p. 740.

    Google Scholar 

  6. Fialkov, A.S., Russ. J. Electrochem., 2000, vol. 36, p. 345.

    Article  CAS  Google Scholar 

  7. New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, Barsukov, I.V., Johnson, C.S., Doninger, J.E., and Barsukov, V.Z., Eds., Dordrecht: Springer, 2006.

    Google Scholar 

  8. Rychagov, A.Yu., Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow, 2008.

    Google Scholar 

  9. Simon, P. and Gogotsi, Y., Phil. Trans. R. Soc. A, 2010, vol. 368, p. 3457.

    Article  CAS  Google Scholar 

  10. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem., 1985, vol. 57, p. 603.

    Article  CAS  Google Scholar 

  11. Frackowiak, E. and Beguin, F., Carbon, 2001, vol. 39, p. 937.

    Article  CAS  Google Scholar 

  12. Halper, M.S. and Ellenbogen, J.C., in MITRE Nanosystems Group 1 (March), 2006, p. 1.

    Google Scholar 

  13. Pandolfo, A.G. and Holltenkamp, A.F., J. Power Sources, 2006, vol. 157, p. 11.

    Article  CAS  Google Scholar 

  14. Wang, G., Zhang, L., and Zhang, J., Chem. Soc. Rev., 2012, vol. 41, p. 797.

    Article  CAS  Google Scholar 

  15. de Levie, R., Electrochim. Acta, 1963, vol. 8, p. 751.

    Article  Google Scholar 

  16. de Levie, R., Electrochim. Acta, 1964, vol. 9, p. 1231.

    Article  Google Scholar 

  17. Posey, F.A. and Morozumi, T., J. Electrochem. Soc., 1966, vol. 113, p. 176.

    Article  CAS  Google Scholar 

  18. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Toplivnye elementy) (Macrokinetics of Processes in Porous Media (Fuel Cells)), Moscow, 1971.

    Google Scholar 

  19. Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk, 1995.

    Google Scholar 

  20. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Disperse and Porous Materials), Novosibirsk, 1999.

    Google Scholar 

  21. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2014, vol. 50.

  22. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2003, vol. 39, p. 622.

    Article  CAS  Google Scholar 

  23. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2001.

    Google Scholar 

  24. Chirkov, Yu.G., Russ. J. Electrochem., 1999, vol. 35, p. 1281.

    CAS  Google Scholar 

  25. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Russ. J. Electrochem., 2011, vol. 47, p. 71.

    Article  CAS  Google Scholar 

  26. Chirkov, Yu.G. and Rostokin, V.I., Russ. J. Electrochem., 2006, vol. 42, p. 715.

    Article  CAS  Google Scholar 

  27. Daniel’-Bek, V.S., Zh. Fiz. Khim., 1948, vol. 22, p. 697.

    Google Scholar 

  28. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: MGU, Nauka, 2004.

    Google Scholar 

  29. Goryunov, A.F., Uravneniya matematicheskoi fiziki v primerakh i zadachakh (Equations of Mathematical Physics in Examples and Problems), Moscow: MIFI, 2008.

    Google Scholar 

  30. Darling, H.E., J. Chem. Eng. Data, 1964, vol. 9, p. 421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 3, pp. 235–250.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Computer simulation of active layers in the electric double layer supercapacitor: Optimization of active layer charging modes and structure, calculation of overall characteristics. Russ J Electrochem 50, 208–222 (2014). https://doi.org/10.1134/S1023193514030033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514030033

Keywords

Navigation