Skip to main content
Log in

Fuel cells with chemically regenerative redox cathodes (review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The use of a solution-phase redox mediator presents an opportunity to perform the slow oxygen reduction reaction in the bulk solution rather than on the surface of a precious metal electrocatalyst. Specific details of several potential mediator chemistries (Br2/2Br, V(V)/V(VI) etc.), the current status of the development, and the potential for future applications of such a technology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bossel, U., Proceedings of the IEEE, vol. 94, no. 10, October 2006, 2006, vol. 94, no. 10, pp. 1826–1837.

    CAS  Google Scholar 

  2. Larsson, R. and Folkesson, B., Journal of Applied Electrochemistry, 1990, vol. 20, no. 5, pp. 737–739.

    Article  CAS  Google Scholar 

  3. Fatih, K., Wilkinson, D.P., Moraw, F., Ilicic, A., and Girard, F., Electrochem. Solid State Lett., 2008, vol. 11, no. 2, pp. B11–B15.

    Article  CAS  Google Scholar 

  4. Singh, A.A.S.R., Potter, A., Clarkson, B., Creeth, A., Downs, C., and Walsh, F.C., J. Power Sources, 2012, vol. 201, pp. 159–163.

    Article  CAS  Google Scholar 

  5. Pattabirman, R., Venkatesan, V.K., and Udupa, H.V.K., J. Sci. Ind. Res., 1981, vol. 40, pp. 432–447.

    Google Scholar 

  6. Kummer, J.T. and Oei, D.G., J. Appl. Electrochem., 1982, vol. 12, pp. 87–100.

    Article  CAS  Google Scholar 

  7. Ilicic, A., Wilkinson, D.P., Fatih, K., and Girard, F., J. Electrochem. Soc., 2008, vol. 155, no. 12, pp. B1322–B1327.

    Article  CAS  Google Scholar 

  8. Posner, A.M., Fuel, 1955, vol. 34, pp. 330–338.

    CAS  Google Scholar 

  9. Juda, W., USA Patent 3 152 013, 1964.

  10. Barna, G.C., Frank, S.N., and Teherani, T.H., J. Electrochem. Soc., 1982, vol. 129, no. 11, pp. 2464–2468.

    Article  CAS  Google Scholar 

  11. Hanrahan, R.J., Heaton, H.L., and Parker, R.Z., USA Patent 5833834, 1998.

  12. Parker, R.Z., Hanrahan, R.J., and Gupta, A.K., USA Patent 5 219 671, 1993.

  13. Parker, R. and Clapper, W.L., DOE Hydrogen Program Review, 2001.

    Google Scholar 

  14. Gupta, A.K., Parker, R.Z., and Hanrahan, R.J., International Journal of Hydrogen Energy, 1993, vol. 18, no. 9, pp. 713–718.

    Article  CAS  Google Scholar 

  15. Nielsen, K., Miami New Times, Aug. 17, 2000.

    Google Scholar 

  16. Livshits, V., Ulus, A., and Peled, E., Electrochemistry Communications, 2006, vol. 8, no. 8, pp. 1358–1362.

    Article  CAS  Google Scholar 

  17. Yeo, J.M.R.S., Tseung, A.C.C., Srinivasan, S., and McElroy, J., J. Appl. Electrochem., 1980, vol. 10, pp. 393–404.

    Article  CAS  Google Scholar 

  18. Yeo, R.S. and Chin, D.T., Journal of the Electrochemical Society, 1980, vol. 127, no. 3, pp. 549–555.

    Article  CAS  Google Scholar 

  19. Peled, E., Bloom, A., and Goor, M., Hydrogen-bromine fuel cells, in Encyclopedia of Electrochemical Power Sources, Elsevier, 2009, pp. 182–191.

    Chapter  Google Scholar 

  20. Hsueh, K.L., Chin, D.T., McBreen, J., and Srinivasan, S., Journal of Applied Electrochemistry, 1981, vol. 11, no. 4, pp. 503–515.

    Article  CAS  Google Scholar 

  21. Mondal, S.K., Rugolo, J., and Aziz, M.J., Materials Research Society Symposium, 2010, vol. GG10.9, p. 1311.

    Google Scholar 

  22. Sivasubramanian, P., Ramasamy, R.P., Freire, F.J., Holland, C.E., and Weidner, J.W., International Journal of Hydrogen Energy, 2007, vol. 32, no. 4, pp. 463–468.

    Article  CAS  Google Scholar 

  23. Motupally, S., Mah, D.T., Freire, F.F., and Weidner, J.W., Interface, 1998, no. Fall, pp. 32–36.

    Google Scholar 

  24. Park, J.S., Chen, C., Wieder, N.L., Vohs, J.M., and Gorte, R.J., Electrochimica Acta, 2011, vol. 56, no. 3, pp. 1581–1584.

    Article  CAS  Google Scholar 

  25. Waycuilis, J.J., Moore, P.K., and Lisewky, G.A., USA Patent 8282810, 2011.

  26. Schaefer, H.F. and Kordesch, K.V., USA Patent 3279949, 1966.

  27. Kummer, J.T. and Oei, D.G., USA Patent 4396687, 1983.

  28. Kummer, J.T. and Oei, D.G., Journal of Applied Electrochemistry, 1985, vol. 15, no. 4, pp. 619–629.

    Article  CAS  Google Scholar 

  29. Folkesson, B., Journal of Applied Electrochemistry, 1990, vol. 20, no. 6, pp. 907–911.

    Article  CAS  Google Scholar 

  30. Bergens, S.H., Gorman, C.B., Palmore, G.T.R., and Whitesides, G.M., Science, 1994, vol. 265, no. 5177, pp. 1418–1420.

    Article  CAS  Google Scholar 

  31. Gorman, C.B., Bergens, S.H., and Whitesides, D.M., J. Catalys., 1996, vol. 158, pp. 92–96.

    Article  CAS  Google Scholar 

  32. Creeth, A.M., Potter, A.R., and Knuckey, K., USA Patent 0297522 A1, 2010.

  33. Pradel, P., 03 Sept. 2009, http://www.technologyre-view.com/news/415136/a-liquid-design-for-cheaper-fuel-cells/.

  34. Cha, S., ACAL company presentation, 2009, www.acalenergy.co.uk.

  35. Ilicic, A.B., Wilkinson, D.P., and Fatih, K., J. Electrochem. Soc., 2010, vol. 157, pp. B529–B535.

    Article  CAS  Google Scholar 

  36. Ilicic, A.B., Dara, M.S., Wilkinson, D.P., and Fatih, K., J. Appl. Electrochem., 2010, vol. 40, pp. 2125–2133.

    Article  CAS  Google Scholar 

  37. Knuckey, K., Rochester, D., and Creeth, A.M., WO Patent 015875-A1, 2011.

  38. Knuckey, K. and Creeth, A., US Patent 0112393 A1, 2010.

  39. Knuckey, K. and Creeth, A.M., UK Patent 2440434, 2011.

  40. Knuckey, K., Rochester, D., and Martin, A., USA Patent 0091746 A1, 2011.

  41. Creeth, A.M. and Farndon, E., USA Patent 0014532 A1, 2011.

  42. Cutler, L.H., USA Patent 3607420, 1969.

  43. Han, S.B., Song, Y.J., Lee, Y.W., Ko, A.R., Oh, J.K., and Park, K.W., Chemical Communications, 2011, vol. 47, no. 12, pp. 3496–3498.

    Article  CAS  Google Scholar 

  44. Carter, W.A., Chiang, Y.M., Duduta, M., and Limthogkul, P., USA Patent 0189520A1, 2011.

  45. Tolmachev, Yu.V., Russ. J. Electrochem., 2014, vol. 50 (in press).

  46. Ryan, M., Fuel Cell Today, 28 Feb. 2012.

    Google Scholar 

  47. Kummer, J.T. and Oei, D.G., Journal of the Electrochemical Society, 1984, vol. 131, no. 8, pp. C323–C323.

    Google Scholar 

  48. Xu, N., Li, X., Zhao, X., Goodenough, J.B., and Huang, K., Energy and Environmental Science, 2011, vol. 4, p. 4942.

    Article  CAS  Google Scholar 

  49. Qizhao Huang, Hong Li, Michael Grätzel, and Wang, Q., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 1793.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vorotyntsev.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 5, pp. 451–461.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolmachev, Y.V., Vorotyntsev, M.A. Fuel cells with chemically regenerative redox cathodes (review). Russ J Electrochem 50, 403–411 (2014). https://doi.org/10.1134/S1023193514020050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193514020050

Keywords

Navigation