Skip to main content
Log in

Mass transfer mechanism and chemical stability of strongly basic anion-exchange membranes under overlimiting current conditions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The dynamics of changes in overall and partial voltammetric characteristics with respect to chloride and hydroxide ions is studied by the method of rotating membrane disk (RMD) under the conditions of stabilized diffusion layer thickness for the original strongly basic MA-41P and homogeneous AMX membranes and also for the modified heterogeneous MA-41P-M membrane at high current densities. For unmodified anion-exchange membranes at currents exceeding the limiting value, the hydrolysis of fixed ammonium bases produces secondary and ternary amino groups which are catalytically active in the reaction of water molecule dissociation. The hydrolysis of amino groups in the membrane surface layer is the mechanism of degradation of electrochemical characteristics of strongly basic membranes. This results in the increase of transport numbers with respect to hydroxide ions and weakening of mass transfer with respect to salt ions. For the surface-modified heterogeneous anion-exchange membranes, no degradation of electrochemical characteristics is observed. The characteristics of the surface-modified MA-41P-M membrane remain stable: after long-term operation of the energized membrane, the partial currents with respect to hydroxide ions are close to zero and the mass transfer with respect to salt ions is considerably intensified. The dependences of the thickness of the hydrolyzed layer of a strongly basic anion-exchange membrane on the time of its exposure to solutions of high pH are determined. An original method is developed for determination of the hydrolyzed layer thickness for strongly-basic anion-exchange membranes, which is based on the copper ability to form stable complex compounds with weakly basic amino groups of anion-exchange membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sata, T., Tsujimoto, M., Yamaguchi, T., and Matsusaki, K., J. Membr. Sci., 1996, vol. 112, p. 161.

    Article  CAS  Google Scholar 

  2. Hwang, U. and Choi, J.-H., Sep. Purif. Technol., 2006, vol. 48, p. 16.

    Article  CAS  Google Scholar 

  3. Zabolotskii, V.I., Bugakov, V.V., Sharafan, M.V., and Chermit, R.Kh., Russ. J. Electrochem., 2012, vol. 48, p. 650.

    Article  CAS  Google Scholar 

  4. Kononov, Yu.A. and Vrevskii, B.M., Zh. Prikl. Khim., 1971, vol. 44, p. 929.

    CAS  Google Scholar 

  5. Varentsov, V.K. and Pevnitskaya, M.V., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1973, no. 4, p. 134.

    Google Scholar 

  6. Gavish, B. and Lifson, S., J. Chem. Soc., Faraday Trans. 1, 1979, vol. 75, p. 463.

    Article  CAS  Google Scholar 

  7. Tanaka, Y. and Seno, M., Denki Kagaku, 1983, vol. 51, p. 267.

    CAS  Google Scholar 

  8. Shaposhnik, V.A., Kastyuchik, A.S., and Kozaderova, O.A., Russ. J. Electrochem., 2008, vol. 44, p. 1073.

    Article  CAS  Google Scholar 

  9. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Usp. Khim., 1988, vol. 57, p. 1403.

    Article  CAS  Google Scholar 

  10. Zabolotskii, V.I., Nikonenko, V.V., Urtenov, M.Kh., Lebedev, K.A., and Bugakov, V.V., Russ. J. Electrochem., 2012, vol. 48, p. 692.

    Article  CAS  Google Scholar 

  11. Zabolotskii, V.I., Loza, S.A., and Sharafan, M.V., Russ. J. Electrochem., 2005, vol. 41, p. 1053.

    Article  CAS  Google Scholar 

  12. Zabolotskii, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transfer in Membranes), Moscow: Nauka, 1996.

    Google Scholar 

  13. Ghalloussi, R., Garcia-Vasquez, W., Bellakhal, N., Larchet, C., Dammak, L., Huguet, P., and Grande, D., Sep. Purif. Technol., 2011, vol. 80, p. 270.

    Article  CAS  Google Scholar 

  14. Iwai, Y. and Yamanishi, T., Polym. Degrad. Stab., 2009, vol. V. 94. P. 679.

    Article  CAS  Google Scholar 

  15. Cheng, Ch. and Fuller, T.F., Polym. Degrad. Stab., 2009, vol. 94, p. 1436.

    Article  Google Scholar 

  16. Zabolotskii, V.I., Fedotov, Yu.A., Nikonenko, V.V., Pis’menskaya, N.D., Belova, E.I., and Lopatkova, G.Yu., RF Patent No. 2008141949 (2008).

  17. Sharafan, M.V. and Zabolotskii, V.I., RF Patent No. 78577 (2008).

  18. Lopatkova, G.Yu., Cand. Sci. (Chem.) Dissertation, Krasnodar, 2006.

    Google Scholar 

  19. Zabolotskii, V.I., Shel’deshov, N.V., and Sharafan, M.V., Russ. J. Electrochem., 2006, vol. 42, p. 1345.

    Article  CAS  Google Scholar 

  20. Zabolotskii, V.I., Sharafan, M.V., Shel’deshov, N.V., and Lovtsov, E.G., Russ. J. Electrochem., 2008, vol. 44, p. 141.

    Article  CAS  Google Scholar 

  21. Zabolotskii, V.I., Sharafan, M.V., and Shel’deshov, N.V., Russ. J. Electrochem., 2008, vol. 44, p. 1127.

    Article  CAS  Google Scholar 

  22. Sharafan, M.V., Zabolotskii, V.I., and Bugakov, V.V., Russ. J. Electrochem., 2009, vol. 45, p. 1162.

    Article  CAS  Google Scholar 

  23. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  24. Zabolotskii, V.I., Ganych, V.V., and Shel’deshov, N.V., Elektrokhimiya, 1991, vol. 27, p. 1245.

    CAS  Google Scholar 

  25. Chermit, R.H., Zabolotskii, V.I., Sharafan, M.V., and Bugakov, V.V., Ion Transport in Organic and Inorganic Membranes: Materials. Proceed. Intern. Conf., 2011.

    Google Scholar 

  26. Choi, J.-H., Moon, S.-H., J. Colloid Interface Sci., 2003, p. 93.

    Google Scholar 

  27. Bugakov, V.V., Zabolotskii, V.I., and Sharafan, M.V., Sorbtsionnye Khromatogr. Protsessy, 2010, vol. 10, p. 870.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kh. Chermit.

Additional information

Original Russian Text © V.I. Zabolotskii, R.Kh. Chermit, M.V. Sharafan, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 1, pp. 45–52.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskii, V.I., Chermit, R.K. & Sharafan, M.V. Mass transfer mechanism and chemical stability of strongly basic anion-exchange membranes under overlimiting current conditions. Russ J Electrochem 50, 38–45 (2014). https://doi.org/10.1134/S102319351401011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351401011X

Keywords

Navigation