Skip to main content
Log in

Modeling of processes in fuel cells based on sulfonic acid membranes and platinum clusters

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The density functional theory with account for gradient correction (DFT/PBE) and periodical boundary conditions was used to model the main stages of processes occurring in hydrogen low-temperature fuel cells. Modeling was carried out at the example of calculation of catalytic anodic and cathodic processes occurring on the surface of the Pt19 catalyst supported on a SnO2 and water adsorption processes on the surface of a membrane represented by a crystal of metisylene sulfonic acid dihydrate [(CH3)3C6H2SO 3 · H5O +2 ]. It was shown that the most energy-efficient process in the membrane is formation of crystals, in which two stoichiometric water molecules correspond to a single SO3H group. Superstoichiometric water is adsorbed on the crystal surface with the adsorption energy of 0.3–0.6 eV; its transition inside the crystal is energy-consuming (2 eV). Barriers of surface proton conductivity are 0.2–0.3 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hafner, J., J. Comput. Chem., 2008, vol. 29, p. 2044.

    Article  CAS  Google Scholar 

  2. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  3. Kresse, G. and Hafner, J., Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 47, p. 558.

    Article  CAS  Google Scholar 

  4. Kresse, G. and Hafner, J., Phys. Rev. B: Condens. Matter Mater. Phys., 1994, vol. 49, p. 14251.

    Article  CAS  Google Scholar 

  5. Kresse, G. and Furthmuller, J., Comput. Mater. Sci., 1996, vol. 6, p. 15.

    Article  CAS  Google Scholar 

  6. Kresse, G. and Furthmuller, J., Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, p. 11169.

    Article  CAS  Google Scholar 

  7. Kresse, G. and Joubert, D., Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, p. 1758.

    Article  CAS  Google Scholar 

  8. Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Yu.A., Volokhov, V.M., and Bazhanova, Z.G., Russ. J. Inorg. Chem., 2011, vol. 56, p. 1294.

    Google Scholar 

  9. Zyubina, T.S., Zyubin, A.S., Dobrovol’skii, Yu.A., Volokhov, V.M., and Bazhanova, Z.G., Russ. J. Inorg. Chem., 2011, vol. 56, p. 1402.

    Article  CAS  Google Scholar 

  10. Zyubina, T.S., Zyubin, A.S., Dobrovol’skii, Yu.A., Volokhov, V.M., Arsatov, A.V., and Bazhanova, Z.G., Russ. J. Inorg. Chem., 2011, vol. 56, p. 1579.

    Article  CAS  Google Scholar 

  11. Zyubina, TS., Zyubin, A.S., Dobrovol’skii, Yu.A., Volokhov, V.M., and Bazhanova, ZG., Russ. J. Inorg. Chem., 2011, vol. 56, p. 1763.

    Google Scholar 

  12. Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Yu.A., and Volokhov, V.M., Russ. J. Inorg. Chem., 2012, vol. 57, p. 1089.

    Article  CAS  Google Scholar 

  13. Zyubin, A.S., Zyubina, T.S., Dobrovol’skii, Yu.A., and Volokhov, V.M., Russ. J. Inorg. Chem., 2012, vol. 57, p. 1460.

    Article  CAS  Google Scholar 

  14. Zyubina, T.S., Russ. Chem. Bull., 2009, vol. 58, p. 1581.

    Article  CAS  Google Scholar 

  15. Zyubina, T.S., Russ. J. Inorg. Chem., 2008, vol. 53, p. 1438.

    Article  Google Scholar 

  16. Zyubina, T.S., Shmigleva, L.W., Pisarev, R.V., Zyubin, A.S., Pisareva, A.V., and Dobrovol’skii, Yu.A., Russ. Chem. Bull., 2012, vol. 61, p. 1401.

    Article  Google Scholar 

  17. Pisareva, A.V., Shilow, G.W., Karelin, A.I., Pisarev, R.V., and Dobrovol’skii, Yu.A., Russ. Chem. Bull., 2008, vol. 57, p. 364.

    Article  CAS  Google Scholar 

  18. Zyubina, T.S., Shmygleva, L.V., Pisarev, R.V., Zyubin, A.S., Pisareva, A.V., and Dobrovol’skii, Yu.A., Russ. Chem. Bull., 2012, vol. 61, p. 1464.

    Article  Google Scholar 

  19. Powder Diffraction File. Featuring Set 34. JCPDS-International Centre for Diffraction Data. Swarthmore, Pennsylvania, USA, 1984.

  20. Norton, P.R. and Richards, P.J., Surf. Sci., 1974, vol. 44, p. 129.

    Article  CAS  Google Scholar 

  21. Natal-Santiago, M.A., Podkolzin, S.G., Cortright, R.D., and Dumesic, J.A., J. Catal. Lett., 1977, vol. 45, p. 155.

    Article  Google Scholar 

  22. Wu, J., Ong, S.W., Kang, H.C., and Tok, E.S., J. Phys. Chem. C, 2010, vol. 114, p. 21252.

    Article  CAS  Google Scholar 

  23. Winkler, A., Guo, X., Siddiqui, H.R., Hagans, P.L., and Yates, J.T., Jr., Surf. Sci., 1988, vol. 201, p. 419.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Zyubina.

Additional information

Original Russian Text © T.S. Zyubina, A.S. Zyubin, Yu.A. Dobrovol’skii, V.M. Volokhov, R.V. Pisarev, A.V. Pisareva, L.V. Shmygleva, 2013, published in Elektrokhimiya, 2013, Vol. 49, No. 8, pp. 878–884.

Published on the basis of the lecture in XI Meeting “Fundamental Problems of Solid State Ionics”, Chernogolovka, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zyubina, T.S., Zyubin, A.S., Dobrovol’skii, Y.A. et al. Modeling of processes in fuel cells based on sulfonic acid membranes and platinum clusters. Russ J Electrochem 49, 788–793 (2013). https://doi.org/10.1134/S1023193513080223

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513080223

Keywords

Navigation