Skip to main content
Log in

Computer aided simulation of hydrogen–oxygen (air) fuel cell with regard to the degradation mechanism of platinum catalyst on the cathode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A mathematical model of a hydrogen–oxygen (air) fuel cell that takes into account the phenomena of degradation of the cathodic platinum catalyst is presented. For potential cycling from 0.6 to 1.1 V with a scan rate of 0.1 V/s, depending on the platinum loadings, the following factors are found to prevail in the mechanism of electroactive surface degradation: the coalescence of platinum nanoparticles at large loadings and the platinum dissolution/redeposition and diffusion to the membrane at medium and low loadings. Based on mathematical simulation, the data on the discharge curves are calculated. The observed decrease in the discharge characteristics is attributed to the degradation of the catalyst active surface and the increased transport losses during accelerated stress testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompsett, D., in Handbook of Fuel Cells. Fundamentals, Technology and Applications, Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., New York: Wiley, 2003, vol. 3, Chapter 6.

  2. Zhang, J., Zhang, H., Wu, J., and Zhang, J., PEM Fuel Cell Testing and Diagnosis, Elsevier, 2013, Chapter 11.

    Google Scholar 

  3. Wu Bi, and Fuller, T.F., J. Power Sources, 2008, vol. 178, p. 188.

    Article  Google Scholar 

  4. Ahluwalia, R.K., Arisetty, S., Peng, J., Subbaraman, R., Wang, X., Kariuki, N., Myers, D.J., Mukundan, R., Borup, R., and Polevaya, O., J. Electrochem. Soc., 2014, vol. 161, p. F291.

    Article  CAS  Google Scholar 

  5. Sninji, J., Nonoyama, N., and Yoshida, T., J. Power Sources, 2012, vol. 215, p. 18.

    Article  Google Scholar 

  6. Tarasevich, M.R. and Bogdanovskaya, V.A., Al’tern. Energ. Ekol., 2009, no. 12, p. 24.

    Google Scholar 

  7. Shao-Horn, Y., Sheng, W.C., Chen, S., Ferreeira, P.J. et al., Top. Catal., 2007, vol. 46, p. 285.

    Article  CAS  Google Scholar 

  8. Ferreeira, P.J., la O’, G.J., Shao-Horn, Y., Morgan, D., et al., J. Electrochem. Soc., 2005, vol. 152, p. B446.

  9. Kawahara, S., Mitsushima, S., Ota, K., and Kamiya, N., ECS Trans., 2006, vol. 3, p. 625.

    Article  CAS  Google Scholar 

  10. Yasuda, K., Taniguchi, A., Akita, T., Ioroi, T., and Siroma, Z., J. Electrochem. Soc., 2006, vol. 153, p. A1599.

    Article  CAS  Google Scholar 

  11. Groom, D.J., Rajaasekhara, S., Matyas, S., Yang, Z., et al., ECS Trans., 2011, vol. 41, p. 933.

    Article  CAS  Google Scholar 

  12. Avakov, V.B., Bogdanovskaya, V.A., Vasilenko, V.A., Ivanitskii, B.A., Kol’tsova, E.M., Kuzov, A.V., Kapustin, A.V., Landgraf, I.K., Stankevich, M.M., and Tarasevich, M.R., Russ. J. Electrochem., 2015, vol. 51, p. 719.

    Article  CAS  Google Scholar 

  13. Vasilenko, V.A., Stankevich, M.M., Khoroshavina, A.A., Shcherbakov, A.I., Kol’tsova, E.M., and Tarasevich, M.R., Usp. Khim. Khim. Tekhnol., 2014, vol. 28, p. 100.

    Google Scholar 

  14. Johnson Matthey Fuel Cells. http://wwwjmfuelcellscom/products/fuel_cell_catalysts. Assessed March 05, 2015.

  15. Frolov, Yu.G., Kurs kolloidnoi khimii. Poverkhnostnye yavleniya i dispersnye sistemy (Course of Colloid Chemistry. Surface Phenomena and Disperse Systems), Moscow: Al’yans, 2004.

    Google Scholar 

  16. Kafarov, V.V., Dorokhov, I.N., and Kol’tsova, E.M., Sistemnyi analiz protsessov khimicheskoi tekhnologii. Entropiinyi i variatsionnyi metody neravnovesnoi termodinamiki v zadachakh khimicheskoi tekhnologii (Systems Analysis of Chemical Technology Processes. Entropy and Variation Methods of Nonequilibrium Thermodynamics in Problems of Chemical Technology), Moscow: Nauka, 1988.

    Google Scholar 

  17. Vasilenko, V.A., Tyutin, A.O., Stankevich, M.M., Kol’tsova, E.M., Kuzov, A.V., and Bogdanovskaya, V.A., Al’tern. Energ. Ekol., 2013, no. 3, p. 18.

    Google Scholar 

  18. Iranzo, A., Muñoz, M., and Rosa, F., and Pino, J., Int. J. Hydrogen Energy, 2010, vol. 35, p. 11533.

    Article  CAS  Google Scholar 

  19. Simulation Driven Product Development, ANSYS. http://ansyscom/. Assessed March 05, 2015.

  20. ANSYS. http://wwwcae-expertru. Assessed March 05, 2015.

  21. Tarasevich, M.R. and Korchagin, O.V., Russ. J. Electrochem., 2014, vol. 50, p. 737.

    Article  CAS  Google Scholar 

  22. Arisetty, S., Wang, X., Ahluwalia, R.K., Mukundan, R., Borup, R., Davey, J., Langlois, D., Gambini, F., Polevaya, O., and Blanchet, S., J. Electrochem. Soc., 2012, vol. 159, p. B455.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. M. Kol’tsova or V. A. Bogdanovskaya.

Additional information

Original Russian Text © E.M. Kol’tsova, V.A. Bogdanovskaya, M.R. Tarasevich, V.A. Vasilenko, M.M. Stankevich, E.B. Filippova, A.A. Khoroshavina, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 1, pp. 62–72.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kol’tsova, E.M., Bogdanovskaya, V.A., Tarasevich, M.R. et al. Computer aided simulation of hydrogen–oxygen (air) fuel cell with regard to the degradation mechanism of platinum catalyst on the cathode. Russ J Electrochem 52, 53–62 (2016). https://doi.org/10.1134/S1023193516010043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516010043

Keywords

Navigation