Skip to main content
Log in

Cathodic electrodeposition and characterization of nanostructured Y2O3 from chloride solution Part I: Effect of current density

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nanoparticles, nanospheres and nanorods of Y(OH)3 and Y2O3 were prepared via cathodic electrodeposition from chloride bath through applying different current densities. First, yttrium hydroxide precursors were cathodically grown on the cathode surface at the current densities of 2, 1, 0.5, 0.25 and 0.1 mA cm−2. Then hydroxide powders were heat-treated at 600°C for 3 h. The composition, crystal structure and morphology of the prepared oxide and hydroxide products were investigated by means of differential scanning calorimetery (DSC), X-ray diffraction (XRD), scanning and transmission electron microscopes (SEM and TEM) and FT-IR spectroscopy. Mechanism of base electrogeneration at the applied conditions, and intercalation of chloride ions in the deposit structure during the electrodeposition were proposed and confirmed by the XRD and TG analyses. The results showed that the structural and morphological properties of the products are directly dictated by the applied current density and it can be recognized as the main factor affecting on the cathodic electrodeposition of Y2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ukai, S. and Fujiwara, M., Nucl. Mater., 2002, vol. 307, p. 749.

    Article  Google Scholar 

  2. Verhiest, K., Almazouzi, A., Wispelaere, N., Petrov, R., and Claessens, S., J. Nucl. Mater., 2009, vol. 385, p. 308.

    Article  CAS  Google Scholar 

  3. Lakshmanan, A., Bhaskar, R.S., Thomas, P.C., Kumar, R.S., and Jose, M.T., Mater. Lett., 2010, vol. 64, p. 1809.

    Article  CAS  Google Scholar 

  4. Keshmiri, M. and Kesler, O., Acta Mater., 2006, vol. 54, p. 4149.

    Article  CAS  Google Scholar 

  5. Heiroth, S., Ghisleni, R., Lippert, T., Michler, J., and Wokaun, A., Acta Mater., 2011, vol. 59, p. 2330.

    Article  CAS  Google Scholar 

  6. Huang, Z., Sun, X., Xiu, Z., Chen, S., and Tsai, C.T., Mater. Lett., 2004, vol. 58, p. 2137.

    Article  CAS  Google Scholar 

  7. Fokema, M.D., Chiu, E., and Ying, J.Y., Langmuir, 2000, vol. 16, p. 3154.

    Article  CAS  Google Scholar 

  8. Srinivasan, R., Yogamalar, R., and Bose, A.C., Mater. Res. Bull., 2010, vol. 45, p. 1165.

    Article  CAS  Google Scholar 

  9. Nelson, J.A. and Wagner, M.J., Chem. Mater., 2002, vol. 14, p. 915.

    Article  CAS  Google Scholar 

  10. Towata, A., Sivakumar, M., Yasui, K., Tuziuti, T., and Kozuka, T., J. Mater. Sci., 2008, vol. 43, p. 1214.

    Article  CAS  Google Scholar 

  11. Lin, C., Zhang, C., and Lin, J., J. Lumin., 2009, vol. 129, p. 1469.

    Article  CAS  Google Scholar 

  12. Fu, Y.P., J. Mater. Sci., 2007, vol. 42, p. 5165.

    Article  CAS  Google Scholar 

  13. Alarcón-Flores, G., Aguilar-Frutis, M., and García-Hipolito, M., J. Mater. Sci., 2008, vol. 43, p. 3582.

    Article  Google Scholar 

  14. Feldmann, C. and Merikhi, J., J. Mater. Sci., 2003, vol. 38, p. 1731.

    Article  CAS  Google Scholar 

  15. Wang, S.J. and Zhong, S.L., Mater. Sci. Engin. B, 2009, vol. 162, p. 200.

    Article  CAS  Google Scholar 

  16. Yang, J., Quan, Z., Kong, D., Liu, X., and Lin, J., Cryst. Growth Des., 2007, vol. 7, p. 730.

    Article  CAS  Google Scholar 

  17. Shijin, W. and Shengliang, Z., Rare Metals, 2009, vol. 28, p. 445.

    Article  Google Scholar 

  18. Hu, C. and Gao, Z., J. Mater. Sci., 2006, vol. 41, p. 6126.

    Article  CAS  Google Scholar 

  19. Li, N., Yanagisawa, K., and Kumada, N., Cryst. Growth Des., 2009, vol. 9, p. 978.

    Article  CAS  Google Scholar 

  20. Li, N. and Yanagisawa, K., J. Solid State Chem., 2008, vol. 181, p. 1738.

    Article  CAS  Google Scholar 

  21. Zhu, H., Ma, Y., Yang, H., Zhu, P., Du, J., Ji, C., and Hou, D., Solid State Commun., 2010, vol. 150, p. 1208.

    Article  CAS  Google Scholar 

  22. Zhang, J., Liu, Z., Lin, J., and Fang, J., Cryst. Growth Des., 2005, vol. 5, p. 1524.

    Google Scholar 

  23. Tang, Q., Liu, Z., Li, S., Zhang, S., Liu, X., and Qian, Y., J. Crystal Growth, 2003, vol. 259, p. 208.

    Article  CAS  Google Scholar 

  24. Zhong, S., Wang, S., and Xu, H., J. Mater. Sci., 2009, vol. 44, p. 3687.

    Article  CAS  Google Scholar 

  25. Matsuda, Y., Imahashi, K., Yoshimoto, N., Morita, M., and Haga, M., J. Alloys Compd., 1993, vol. 193, p. 277.

    Article  CAS  Google Scholar 

  26. Lee, J. and Tak, Y., J. Industrial. Engin. Chem., 1999, vol. 5, p. 139.

    CAS  Google Scholar 

  27. Zhitomirsky, I. and Petric, A., J. Mater. Chem., 2000, vol. 10, p. 1215.

    Article  CAS  Google Scholar 

  28. Zhitomirsky, I. and Petric, A., Mater. Lett., 2001, vol. 50, p. 189.

    Article  CAS  Google Scholar 

  29. Avramova, I., Stoychev, D., and Marinova, T., Appl. Sur. Sci., 2006, vol. 253, p. 1365.

    Article  CAS  Google Scholar 

  30. Siab, R., Bonnet, G., Brossard, J.M., Balmain, J., and Dinhut, J.F., Appl. Sur. Sci., 2007, vol. 253, p. 3425.

    Article  CAS  Google Scholar 

  31. Hsu, C.T. and Yen, S.K., J. Electrochem. Soc., 2005, vol. 152, p. C813.

    Article  CAS  Google Scholar 

  32. Hsu, C.T., Li, C.F., and Yen, S.K, J. Electrochem. Soc., 2009, vol. 156, p. D11.

    Article  CAS  Google Scholar 

  33. Tondo, E., Boniardi, M., Cannoletta, D., De Riccardisc, M.F., and Bozzin, B., J. Power Sour., 2010, vol. 195, p. 4772.

    Article  CAS  Google Scholar 

  34. Aghazadeh, M., Nozad Golikand, A., Adelkhani, H., and Ghaemi, M., J. Electrochem. Soc., 2010, vol. 157, p. D519.

    Article  CAS  Google Scholar 

  35. Aghazadeh, M., Nozad Golikand, A., and Ghaemi, M., Mater. Lett., 2011, vol. 65, p. 2545.

    Article  CAS  Google Scholar 

  36. Aghazadeh, M., Ghaemi, M., Nozad Golikand, A., and Yousefi, T., J. Rare Earths, 2012, vol. 30, p. 236.

    Article  CAS  Google Scholar 

  37. Yousefi, T., Aghazadeh, M., Nozad Golikand, A., and Mashadizadeh, M.H., Sci. Adv. Mater., 2012, vol. 4, p. 1.

    Article  Google Scholar 

  38. Zhitomirsky, I., Adv. Coll. Interf. Sci., 2002, vol. 97, p. 279.

    Article  CAS  Google Scholar 

  39. Nan, L. and Kazumichi, Y., J. Solid State Chem., 2008, vol. 181, p. 1738.

    Article  Google Scholar 

  40. Michel, B.J., Josseline, B., Juan, C., and Gilles, B., Surf. Coat. Tech., 2004, vol. 185, p. 275.

    Article  Google Scholar 

  41. McIntyre, L., Jackson, L., and Fogg, A., J. Phys. Chem. Solids, 2008, vol. 69, p. 1070.

    Article  CAS  Google Scholar 

  42. McIntyre, L., Jackson, L., and Fogg, A., Chem. Mater., 2008, vol. 20, p. 335.

    Article  CAS  Google Scholar 

  43. Zhu, Q., Li, J., Zhi, C., Li, X., Sun, X., Sakka, Y., Golberg, D., and Bando, Y., Chem. Mater., 2010, vol. 22, p. 4204.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Aghazadeh.

Additional information

Published in Russian in Elektrokhimiya, 2013, Vol. 49, No. 4, pp. 389–399.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghazadeh, M., Barmi, AA.M. & Shiri, H.M. Cathodic electrodeposition and characterization of nanostructured Y2O3 from chloride solution Part I: Effect of current density. Russ J Electrochem 49, 344–353 (2013). https://doi.org/10.1134/S1023193513040022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193513040022

Keywords

Navigation