Skip to main content
Log in

On the origin of frequency dispersion at the interface between mercury electrode and aqueous solutions of alkali halides

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The origin of frequency dispersion of electrochemical impedance is investigated at the interface of mercury and aqueous solutions of single alkali halides. It is found that in the presence of each one of KI, CsI, CsF and CsBr salts, the interface presents certain potential regions where frequency dispersion effects are detected and others where the ideal capacitor behavior is closely approximated. Frequency dispersion effects are contributed by interfacial processes such as anion and cation adsorption, mercury halide film formation and dissolution and charge transfer reactions. The discrimination between frequency dispersion due to charge transfer processes occurring at the Hg/solution interface and that due to reactant adsorption itself is generally difficult and depends on the reaction mechanism, provided that a discrete adsorption step is anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nyikos, L. and Pajkossy, T., Electrochim. Acta, 1985, vol. 30, p. 1533.

    Article  CAS  Google Scholar 

  2. Pajkossy, T., Wandlowski, T., and Kolb, D.M., J. Electroanal. Chem., 1996, vol. 414, p. 209.

    Google Scholar 

  3. Pajkossy, T., Solid State Ionics, 2005, vol. 176, p. 1997.

    Article  CAS  Google Scholar 

  4. Neves, R.S., De Robertis, E., and Motheo, A.J., Electrochim. Acta, 2006, vol. 51, p. 1215.

    Article  CAS  Google Scholar 

  5. Pajkossy, T. and Kolb, D.M., Electrochem. Commun., 2011, vol. 13, p. 284.

    Article  CAS  Google Scholar 

  6. Grahame, D.C., J. Am. Chem. Soc., 1946, vol. 68, p. 301.

    Article  CAS  Google Scholar 

  7. Melik-Gaikazyan, V.I., Zhur. Fiz. Khim., 1952, vol. 26, p. 560.

    CAS  Google Scholar 

  8. Achatz, G., Friedmann, J., and Hertzog, G.W., Surf. Technol., 1978, vol. 6, p. 455.

    Article  CAS  Google Scholar 

  9. Achatz, G., Friedmann, J., Hertzog, G.W., and Plot, W., Surf. Technol., 1979, vol. 9, p. 323.

    Article  CAS  Google Scholar 

  10. Hertzog, G.W. and Marageter, E., Surf. Technol., 1980, vol. 11, p. 179.

    Article  Google Scholar 

  11. Damaskin, B.B. and Ivanova, R.V., Soviet Electrochem., 1982, vol. 18, p. 1321.

    Google Scholar 

  12. Motheo, A.J., Sadkowski, A., and Neves, R.S., J. Electroanal. Chem., 1997, vol. 430, p. 253.

    Article  CAS  Google Scholar 

  13. Pajkossy, T., Solid State Ionics, 1997, vol. 94, p. l23.

    Article  Google Scholar 

  14. Pospišil, L., J. Phys. Chem., 1988, vol. 92, p. 2501.

    Article  Google Scholar 

  15. Wandlowski, T. and Pospišil, L., J. Electroanal. Chem., 1989, vol. 270, p. 319.

    Article  CAS  Google Scholar 

  16. Hromadova, M., Sokolova, R., Pospišil, L., and Fanelli, N., J. Phys. Chem., Ser. B, 2006, vol. 110, p. 4869.

    Article  CAS  Google Scholar 

  17. Bozatzidis, A.I., Anastopoulos, A.G., and Laopoulos, T., Electroanalysis, 2007, vol. 19, p. 1711.

    Article  CAS  Google Scholar 

  18. Grahame, D.C., J. Am. Chem. Soc., 1949, vol. 71, p. 2975.

    Article  CAS  Google Scholar 

  19. Esin, O.A. and Markov, B.F., Zhur. Fiz. Khim., 1939, vol. 13, p. 318.

    Google Scholar 

  20. Vorsina, M. and Frumkin, A.N., Zhur. Fiz. Khim., 1945, vol. 19, p. 171.

    Google Scholar 

  21. Bagotskaya, I.A., Zhur. Fiz. Khim., 1952, vol. 26, p. 659.

    CAS  Google Scholar 

  22. Yaraliev, Y.A., Russ. Chem. Rev., 1982, vol. 51, p. 566.

    Article  Google Scholar 

  23. Vetter, K.J., Z. Phys. Chem., 1952, vol. 199, p. 285.

    CAS  Google Scholar 

  24. Kolthoff, I.M. and Miller, C.S., J. Am. Chem. Soc., 1941, vol. 63, p. 1405.

    Article  CAS  Google Scholar 

  25. Boult, E.H. and Thirsk, H.R., Trans. Far. Soc., 1954, vol. 50, p. 404.

    Article  CAS  Google Scholar 

  26. Urquidi-Macdonald, M., Real, S., and Macdonald, D.D., Electrochim. Acta, 1990, vol. 35, p. 1559.

    Article  CAS  Google Scholar 

  27. Eftekhari, A., Phys. Lett., Ser. A, 2004, vol. 332, p. 382.

    Article  CAS  Google Scholar 

  28. Kopper, M.T.M., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 1369.

    Article  Google Scholar 

  29. Sadkowski, A., Solid State Ionics, 2005, vol. 176, p. 1987.

    Article  CAS  Google Scholar 

  30. Gokhshtein, A.Ya., Elektrokhimiya, 1965, vol. 1, p. 906.

    Google Scholar 

  31. Ma, L. and Vitt, J.E., J. Electrochem. Soc., 1999, vol. 146, p. 4152.

    Article  CAS  Google Scholar 

  32. Vitt, J.E., Ma, L., and Johnson, D.C., J. Electroanal. Chem., 2000, vol. 492, p. 70.

    Article  CAS  Google Scholar 

  33. Chen, S., Huang, W., Niu, Z., and Li, Z., Chem. Phys. Lett., 2006, vol. 421, p. 161.

    Article  CAS  Google Scholar 

  34. de Levie, R., J. Electroanal. Chem., 1970, vol. 25, p. 257.

    Article  Google Scholar 

  35. Kariuki, S. and Dewald, H.D., Electrochim. Acta, 1998, vol. 43, p. 701.

    Article  CAS  Google Scholar 

  36. Olexova, A., Kral, D., and Treindl, L., React. Kinet. Catal. Lett., 1992, vol. 48, p. 469.

    Article  CAS  Google Scholar 

  37. Saha, M.S., Che, Y., Okajima, T., Kiguchi, T., Nakamura, Y., Tokuda, K., and Ohsaka, T., J. Electroanal. Chem., 2001, vol. 496, p. 61.

    Article  Google Scholar 

  38. Baranski, A.S. and Fawcett, W.R., J. Chem. Soc. Faraday Trans., 1980, vol. 176, p. 1962.

    Article  Google Scholar 

  39. Cao, C.-N., Electrochim. Acta, 1990, vol. 35, p. 837.

    Article  CAS  Google Scholar 

  40. Fawcett, W.R., J. Phys. Chem., 1989, vol. 93, p. 2675.

    Article  CAS  Google Scholar 

  41. Fawcett, W.R., J. Electroanal. Chem., 1991, vol. 302, p. 13.

    Article  CAS  Google Scholar 

  42. Fawcett, W.R., J. Electroanal. Chem., 1991, vol. 310, p. 13.

    Article  CAS  Google Scholar 

  43. Koper, M.T.M and Schmickler, W., J. Electroanal. Chem., 1998, vol. 450, p. 83.

    Article  CAS  Google Scholar 

  44. Anastopoulos, A.G. and Bozatzidis, A.I., Electrochim. Acta, 2009, vol. 54, p. 4099.

    Article  CAS  Google Scholar 

  45. Anastopoulos, A.G. and Bozatzidis, A.I., Russ. J. Electrochem., 2011, vol. 47, p. 53.

    Article  CAS  Google Scholar 

  46. Parsons, R. and Stockton, A., J. Electroanal. Chem., 1970, vol. 25, pp. 10–12.

    Article  Google Scholar 

  47. Reeves, R.M., Sluyters-Rehbach, M., and Sluyters, J.H., J. Electroanal. Chem., 1972, vol. 34, p. 55.

    CAS  Google Scholar 

  48. Anastopoulos, A.G. and Latsinoglou, Th., J. Solution Chem., 2005, vol. 34, p. 1341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Anastopoulos.

Additional information

Published in Russian in Elektrokhimiya, 2014, Vol. 50, No. 1, pp. 78–88.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastopoulos, A.G., Papaderakis, A.A. On the origin of frequency dispersion at the interface between mercury electrode and aqueous solutions of alkali halides. Russ J Electrochem 50, 70–79 (2014). https://doi.org/10.1134/S102319351302002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351302002X

Keywords

Navigation