Skip to main content
Log in

Electrocatalytic properties of nanocomposites based on conducting polymers and titanium dioxide in oxygen reduction process

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical characteristics and electrocatalytic properties in the oxygen reduction reaction are studied on hybrid nanocomposites based on conducting polymers (polyaniline, polypyrrol) doped with phosphomolybdic acid (PMA), and TiO2 and also their bifunctional analogs containing up to 5 wt % of nanosize platinum. It is found that the obtained nanocomposites in 0.5 M H2SO4 are capable of reversible electro-chemical redox transitions (in the range of potentials from −0.6 to 1.0 V vs. Ag/AgCl), in which the main contribution is provided by the corresponding conducting polymer and dopant (PMA). It is shown that activity of the studied nanocomposites in the oxygen reduction reaction is caused by the joint catalytic effect of all their components: the polymer, TiO2, H3PMo12O40, Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezerra, C.W.B., Zhang, L., Lee, K., and Liu, H., Marques A.L.B., Marques E.P., Wang H., Zhang J., Electrochim. Acta, 2008, vol. 53, p. 4937.

    Article  CAS  Google Scholar 

  2. Murthi, V.S., Urian, R.C., and Mukerjee, S., J. Phys. Chem. B, 2004, vol. 108, p. 11011.

    Article  CAS  Google Scholar 

  3. Sasaki, K. and Adzic, R.R., J. Electrochem. Soc., 2008, vol. 155, p. B180.

    Article  CAS  Google Scholar 

  4. Tang, J.M., Jensen, K., Waje, M., Li, W., Larsen, P., Pauley, K., Chen, Z., Ramesh, P., Itkis, M.E., Yan, Y., and Haddon, R.C., J. Phys. Chem. C, 2007, vol. 111, p. 17901.

    Article  CAS  Google Scholar 

  5. Bashyam, R. and Zelenay, P., Nature Lett., 2006, vol. 443, p. 63.

    Article  CAS  Google Scholar 

  6. Fernandez, J.L., Raghuveer, V., Manthiram, A., and Bard, A.J., J. Am. Chem. Soc., 2005, vol. 127, p. 13100.

    Article  CAS  Google Scholar 

  7. Gonzalez-Huerta, R.G., Chavez-Carvayar, J.A., and Solorza-Feria, O., J. Power Sources, 2006, vol. 153, p. 11.

    Article  CAS  Google Scholar 

  8. Zhang, L., Zhang, J., Wilkson, D.P., and Wang, H., J. Power Sources, 2006, vol. 156, p. 171.

    Article  CAS  Google Scholar 

  9. Bezerra, C.W.B., Zhang, L., Liu, H., Lee, K., Marques, A.L.B., Marques, E.P., Wang, H., and Zhang, J., J. Power Sources, 2007, vol. 173, p. 891.

    Article  CAS  Google Scholar 

  10. Wang, B., J. Power Sources, 2005, vol. 152, p. 1.

    Article  CAS  Google Scholar 

  11. Villers, D., Jacques-Bedard, X., and Dodelet, J.P., J. Electrochem. Soc., 2004, vol. 151, p. A1507.

    Article  CAS  Google Scholar 

  12. Medard, C., Lefevre, M., Dodelet, J.P., Jaouen, F., and Lindbergh, G., Electrochim. Acta, 2006, vol. 51, p. 3202.

    Article  CAS  Google Scholar 

  13. MacDiarmid, A.G., Angew. Chem. Int. Ed., 2001, vol. 40, p. 2581.

    Article  CAS  Google Scholar 

  14. Malinauskas, A., Malinauskiene, J., and Ramanavicius, A., Nanotecnology, 2005, vol. 16, p. R51.

    Article  CAS  Google Scholar 

  15. Podlovchenko, B.I. and Andreev, V.N., Usp. Khim., 2002, vol. 71, p. 950.

    Article  Google Scholar 

  16. Posudievskii, O.Yu. and Pokhodenko, V.D., Izv. Akad. Nauk, Ser. Khim., 2005, p. 643.

  17. Coutanceau, C., Elhourch, A., Crouigneau, P., Leger, J.-M., and Lamy, C., Electrochim. Acta, 1995, vol. 40, p. 2739.

    Article  CAS  Google Scholar 

  18. Retamal, B.A., Vaschetto, M.E., and Zagal, J.H., J. Electroanal. Chem., 1997, vol. 431, p. 1.

    Article  CAS  Google Scholar 

  19. Dong, S.J. and Liu, M.J., Electrochim. Acta, 1994, vol. 39, p. 947.

    Article  CAS  Google Scholar 

  20. Millan, W.M., Thompson, T.T., Arriaga, L.G., and Smit, M.A., Int. J. Hydrogen Energy, 2009, vol. 34, p. 694.

    Article  Google Scholar 

  21. Qi, Z. and Pickup, P.G., Chem. Commun., 1998, p. 2299.

  22. Vork, F.T.A. and Barendrecht, E., Electrochim. Acta, 1990, vol. 35, p. 135.

    Article  CAS  Google Scholar 

  23. Khomenko, V.G., Barsukov, V.Z., and Katashinskii, A.S., Electrochim. Acta, 2005, vol. 50, p. 1675.

    Article  CAS  Google Scholar 

  24. Sadakane, M. and Steckhan, E., Chem. Rev., 1998, vol. 98, p. 219.

    Article  CAS  Google Scholar 

  25. Hasik, M., Pron, A., Kulszewicz-Bajer, I., Pozniaczek, A., Bielanski, A., Piwowarska, Z., and Dziembaj, R., Synth. Met., 1993, vol. 55–57, p. 972.

    Article  Google Scholar 

  26. Kurys, Ya.I. and Pokhodenko, V.D., Synth. Met., 2004, vol. 144, p. 107.

    Article  Google Scholar 

  27. Kurys’, Ya.I., Netyaga, N.S., Koshechko, V.G., and Pokhodenko, V.D., Teor. Eksp. Khim., 2007, vol. 43, p. 307.

    Google Scholar 

  28. Kurys’, Ya.I., Netyaga, N.S., and Pokhodenko, V.D., Fundamental’nye problemy elektrokhimicheskoi energetiki: materialy VII Mezhdunar. konf. (Fundamental Problems of Electrochemical Energetics: Materials of VII International Conference), Kazarinov, I.A., Ed., Saratov: Izd-vo Sarat. un-ta, 2008.

    Google Scholar 

  29. Tsujiko, A., Itoh, H., Kisumi, T., Shiga, A., Murakoshi, K., and Nakato, Y., Phys. Chem. B, 2002, vol. 106, p. 5878.

    Article  CAS  Google Scholar 

  30. Mentus, S.V., Electrochim. Acta, 2004, vol. 50, p. 27.

    Article  CAS  Google Scholar 

  31. Kim, J.-H., Ishihara, A., Mitsushima, S., Kamiya, N., and Ota, K.-I., Electrochim. Acta, 2007, vol. 52, p. 2492.

    Article  CAS  Google Scholar 

  32. Stanis, R.J., Kuo, M.-Ch., Rickett, A.J., Turner, J.A., and Herring, A.M., Electrochim. Acta, 2008, vol. 53, p. 8277.

    Article  CAS  Google Scholar 

  33. Wang, Y., Xu, X., Tian, Z., Zong, Y., Cheng, H., and Lin, C., Chem.-Eur. J., 2006, vol. 12, p. 2542.

    Article  CAS  Google Scholar 

  34. Li, X., Chen, W., Bian, C., He, J., Xu, N., and Xue, G., Applied Surf. Sci., 2003, vol. 217, p. 16.

    Article  CAS  Google Scholar 

  35. Xia, H. and Wang, Q., Chem. Mater., 2002, vol. 14, p. 2158.

    Article  CAS  Google Scholar 

  36. Pouget, J.P., Jozefowicz, M.E., Epstein, A.J., and Tang, X., MacDiarmid A.G, Macromolecules, 1991, vol. 24, p. 779.

    Article  CAS  Google Scholar 

  37. Pron, A., Synth. Met., 1992, vol. 46, p. 277.

    Article  CAS  Google Scholar 

  38. Wang, F., Yang, R., Gong, J., Sui, C., Luo, Y., and Qu, L., Eur. Polymer J., 2006, vol. 42, p. 2108.

    Article  CAS  Google Scholar 

  39. Nyczyk, A., Hasik, M., Turek, W., and Sniechota, A., Synth. Met., 2009, vol. 159, p. 561.

    Article  CAS  Google Scholar 

  40. Kang, E.T., Neho, K.G., and Tan, K.L., Prog. Polym. Sci., 1998, vol. 23, p. 277.

    Article  CAS  Google Scholar 

  41. Carraso, P.M., Grande, H.J., Cortazar, M., Alberdi, J.M., Areizaga, J., and Pomposo, J.A., Synth. Met., 2006, vol. 156, p. 420.

    Article  Google Scholar 

  42. Rocchiccioli-Deltcheff, C., Thouvenot, R., and Frank, R., Spectrochim. Acta, 1976, vol. 32A, p. 587.

    CAS  Google Scholar 

  43. Vernitskaya, T.V. and Efimov, O.N., Usp. Khim., 1997, vol. 66, p. 489.

    Article  CAS  Google Scholar 

  44. Bian, C. and Xue, G., Mater. Lett., 2007, vol. 61, p. 1299.

    Article  CAS  Google Scholar 

  45. Delime, F., Leger, J.M., and Lamy, C., J. Appl. Electrochem., 1998, vol. 28, p. 27.

    Article  CAS  Google Scholar 

  46. Zimer, A.M., Bertholdo, R., Grassi, M.T., Zarbin, A.J.G., and Mascaro, L.H., Electrochem. Commun., 2003, vol. 5, p. 983.

    Article  CAS  Google Scholar 

  47. Schnitzler, D.C. and Zarbin, A.J.G., J. Braz. Chem. Soc., 2004, vol. 15, p. 378.

    Article  CAS  Google Scholar 

  48. Rajesh, B., Thampi, R.K., Bonard, J.-M., Xanthapolous, N., Mathieu, H.J., and Viswanathan, B., Electrochem. Solid-State Lett., 2002, vol. 5, p. E71.

    Article  CAS  Google Scholar 

  49. Laborde, H., Leger, J.-M., and Lamy, C., J. Appl. Electrochem., 1994, vol. 24, p. 219.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Kurys.

Additional information

Original Russian Text © Ya.I. Kurys, O.S. Dodon, O.O. Ustavytska, V.G. Koshechko, V.D. Pokhodenko, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 11, pp. 1161–1168.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurys, Y.I., Dodon, O.S., Ustavytska, O.O. et al. Electrocatalytic properties of nanocomposites based on conducting polymers and titanium dioxide in oxygen reduction process. Russ J Electrochem 48, 1058–1064 (2012). https://doi.org/10.1134/S1023193512110092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512110092

Keywords

Navigation