Skip to main content
Log in

Kinetics of nickel electroplating from methanesulfonate electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The overpotential of nickel ion electroreduction on the nickel and mercury electrodes is shown to increase in the following sequence of anions: ClO 4 ,CH3SO 3 , SO 2−4 . On the nickel electrode, the overpotential of nickel evolution decreases as the pHv increases from 1.5 to 4. This is associated with the increase in pHs as the result of a parallel reaction of hydrogen evolution. It is shown that in contrast to mercury, the Tafel plots of the nickel electrode demonstrate a bend corresponding to the change in their slope from −0.044 to −0.132 V. This is accompanied by the lowering down of the reaction order in nickel ions from 2 to 1. A mechanism of nickel ion electroreduction that includes two parallel routes is proposed and substantiated by a model. In the low overpotential range, the predominant process is the electroreduction of nickel hydroxocomplexes, which is characterized by the strong dependence of the reaction rate on the potential and the concentration of electroactive species. For high overpotentials, the predominant process is the direct discharge of nickel aquacomplexes the rate of which depends weaker on the potential and the concentration of electroactive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeager, J., Cels, J.P., Yeager, E., and Hovorka, F., J. Electrochem. Soc, 1959, vol. 106, p. 328.

    Article  CAS  Google Scholar 

  2. Epelboin, I., Joussellin, M., and Wiart, R., J. Electroanal. Chem., 1981, vol. 119, p. 61.

    Article  CAS  Google Scholar 

  3. Chassaing, E., Joussellin, M., and Wiart, R., J. Electroanal. Chem., 1983, vol. 157, p. 75.

    CAS  Google Scholar 

  4. Epelboin, I., Joussellin, M., and Wiart, R., J. Electroanal. Chem., 1979, vol. 101, p. 281.

    Article  CAS  Google Scholar 

  5. Wiart, R., Electrochim. Acta, 1990, vol. 35, p. 1587.

    Article  CAS  Google Scholar 

  6. Piatti, R.C.V., Arvia, J., and Podesta, J.J., Electrochim. Acta, 1969, vol. 14, p. 541.

    Article  CAS  Google Scholar 

  7. Berezina, S.I., Gorbachuk, G.A., and Sageeva, R.M., Elektrokhimiya, 1971, vol. 7, p. 1058.

    CAS  Google Scholar 

  8. Berezina, S.I., Gorbachuk, G.A., and Sageeva, R.M., Elektrokhimiya, 1974, vol. 10, p. 1882.

    CAS  Google Scholar 

  9. Ovari, F. and Rotinyan, A.L., Elektrokhimiya, 1970, vol. 6, p. 528.

    CAS  Google Scholar 

  10. Chernyshova, I.S., Maksimenko, S.A., and Kudryavtsev, V.H., Galvanotekhn. Obrab. Pov-ti., 1996, vol. 3, p. 12.

    Google Scholar 

  11. Sknar, I.V., Sknar, Yu.E., and Danilov, F.I., Visnik NTU KhPI, 2008, vol. 13, no. 32, p. 147.

    Google Scholar 

  12. Kotik, F.I., (Express Control of Electrolytes, Solutions, and Melts. Handbook), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  13. Bockris, J.O’M., Argade, S.D., Giladi, E., and Wiart, R., Electrochim. Acta, 1969, vol. 14, p. 1259.

    Article  CAS  Google Scholar 

  14. Novyi spravochnik khimika i tekhnologa. Khimicheskoe ravnovesie. Svoistva rastvorov (New Handbook of Chemist and Technologist. Chemical Equilibrium. Solution Properties), St. Petersburg: ANO NPO Professional, 2004.

  15. Vetter, K.J., Elektrochemische Kinetik, Berlin: Springer, 1961.

    Google Scholar 

  16. Berezina, S.I., Gorbachuk, G.A., and Kurenkova, A.N., Elektrokhimiya, 1971, vol. 7, p. 467.

    CAS  Google Scholar 

  17. Santana, A.I.C., Diaz, S.L., Barcia. O.E., and Mattos, O.R., J. Electrochem. Soc., 2009, vol. 156, p. D326.

    Article  CAS  Google Scholar 

  18. Slizhis, R.P. and Matulis, Yu.Yu, Tr. AN LitSSR, Ser. B., 1964, vol. 1(36), p. 45.

    Google Scholar 

  19. Pavlov, V.N. and Bondar’, V.V., Usp. Khim., 1973, vol. 42, p. 987.

    CAS  Google Scholar 

  20. Ruvinskii, O.E., Elektrokhimiya, 1975, vol. 11, p. 122.

    CAS  Google Scholar 

  21. Ruvinskii, O.E., Elektrokhimiya, 1975, vol. 11, p. 966.

    CAS  Google Scholar 

  22. Heusler, K.E., Electrochim. Acta, 1968, vol. 13, p. 59.

    Article  CAS  Google Scholar 

  23. Epelboin, I. and Wiart, R., J. Electrochem. Soc, 1971, vol. 118, p. 1577.

    Article  CAS  Google Scholar 

  24. Frumkin, A.N., Bagotzky, V.S., Iofa, Z.A., and Kabanov, B.N., Kinetika Elektrodnykh Protsessov (Kinetics of Electrode Processes), Moscow: Izd. Mosk. Univ., 1952.

    Google Scholar 

  25. Krishtalik, L.I., Elektrodnye reaktsii. Mekhanizm elementarnogo akta (Electrode Reactions: Mechanism of Elementary Act), Moscow: Nauka, 1979.

    Google Scholar 

  26. Danilov, F.I. and Protsenko, V.S., Russ. J. Elektrochem., vol. 40, pp. 1–9.

  27. Losev, V.V., Itogi Nauki Tekh., Ser.: Elektrokhim., Moscow: VINITI, 1971, vol. 6, p. 65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. I. Danilov.

Additional information

Original Russian Text © F.I. Danilov, I.V. Sknar, Yu.E. Sknar, 2011, published in Elektrokhimiya, 2011, Vol. 47, No. 9, pp. 1109–1116.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, F.I., Sknar, I.V. & Sknar, Y.E. Kinetics of nickel electroplating from methanesulfonate electrolyte. Russ J Electrochem 47, 1035–1042 (2011). https://doi.org/10.1134/S1023193511090114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193511090114

Keywords

Navigation