Skip to main content
Log in

Sodium chloride concentration by electrodialysis with hybrid organic-inorganic ion-exchange membranes: An investigation of the process

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

This study examines how conditions for modifying homogeneous MF-4SK and heterogeneous MK-40 membranes with tetraethoxysilane affect membrane properties. The microstructure of the bulk membrane and its surface, both before and after exposure to the modifying agent, is examined by scanning electron microscopy, spark spectrophotometry, and standard contact porosimetry. The process of sodium chloride concentration by electrodialysis with hybrid organic-inorganic membranes in cells with noncirculating concentration compartments is investigated, and a mathematical model of the concentration process by electrodialysis is used to determine transport properties: current efficiency, diffusion and osmotic permeabilities, and the salt hydration number. For highly hydrophilic membranes, it is shown that water transport occurs both in ion hydration shells and also as free water. It is established that after modified membranes undergo additional heat treatment, the transport of free water ceases, and the water transport number decreases. This is in accord with an increase in the salt content of the concentrate during concentration by electrodialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lacey, R.E., and Loeb, S., Eds., Industrial Processing with Membranes, New York: Wiley-Interscience, 1972.

    Google Scholar 

  2. Grebenyuk, V.D., Pisaruk, V.I., and Strizhak, N.P., Khim. Tekhnol. Vody, 1980, vol. 2, p. 36.

    CAS  Google Scholar 

  3. Grebenyuk, V.D., Veisov, B.K., Chebotareva, R.D., Braude, K.P., and Nefedova, G.Z., Zh. Prikl. Khim., 1986, vol. 59, p. 916.

    CAS  Google Scholar 

  4. Pilipenko, A.T., Grebenyuk, V.D., Mel’nik, L.A., and Emets, L.V., Khim. Tekhnol. Vody, 1988, vol. 10, p. 344.

    CAS  Google Scholar 

  5. Demin, A.V., Cand. Sci. (Chem.) Dissertation, Krasnodar, 2007.

  6. Rodnikov, S.N., Likhachev, V.A., Shishkina, S.V., and Kondratov, V.M., Voprosy metallovedeniya v gal’vanotekhnike i korrozii: Uchebnoe posobie (Problems of Physical Metallurgy in Electroplating and Corrosion: AManual), Gor’kii: Kirov. Politekh. Inst., 1989.

    Google Scholar 

  7. Pevnitskaya, M.V., Varentsov, V.K., and Gnusin, N.P., Zh. Prikl. Khim., 1969, vol. 42, p. 336.

    Google Scholar 

  8. Pis’menskii, V.F., Cand. Sci. (Eng.) Dissertation, Krasnodar, 1982.

  9. Grebenyuk, V.D., Ponomarenko, N.A., and Lakota-Fabulyak, Ya.G., Zh. Prikl. Khim., 1985, vol. 58, p. 928.

    Google Scholar 

  10. Zabolotskii, V.I., Shudrenko, A.A., and Gnusin, N.P., Elektrokhimiya, 1988, vol. 24, p. 744.

    CAS  Google Scholar 

  11. Gnusin, N.P., Berezina, N.P., and Demina, O.A., Zh. Prikl. Khim., 1986, vol. 59, p. 679.

    CAS  Google Scholar 

  12. Gnusin, N.P., Demina, O.A., and Berezina, N.P., Elektrokhimiya, 1987, vol. 23, p. 1247.

    CAS  Google Scholar 

  13. Gnusin, N.P., Demina, O.A., Berezina, N.P., and Parshikov, S.B., Teoriya i praktika sorbtsionnykh protsessov (Theory and Practice of Sorption Processes), no. 25, Voronezh: Voronezh. Gos. Univ., 1999.

    Google Scholar 

  14. Berezina, N.P., Timofeev, S.V., Demina, O.A., Ozerin, A.N., and Rebrov, A.V., Elektrokhimiya, 1992, vol. 28, p. 1050.

    CAS  Google Scholar 

  15. Yaroslavtsev, A.B., and Nikonenko, V.V., Ross. nanotekhnol., 2009, vol. 4, Nos. 3–4, p. 8 [Nanotechnol. Russ. (Engl. Transl.), 2009, vol. 4, Nos. 3–4, pp. 137–159].

    Google Scholar 

  16. Mauritz, K.A., Mountz, D.A., Reuschle, D.A., and Blackwell, R.I., Electrochim. Acta, 2004, vol. 50, p. 565.

    Article  CAS  Google Scholar 

  17. Mosa, J., Durán, A., and Aparicio, M., J. Power Sources, 2009, vol. 192, p. 138.

    Article  CAS  Google Scholar 

  18. Erdey-Grüz, T., Transport Phenomena in Aqueous Solutions, New York: Wiley, 1974.

    Google Scholar 

  19. Voropaeva, E.Yu., Il’ina, A.A., Shalimov, A.S., Pinus, I.Yu., Stenina, I.A., and Yaroslavtsev, A.B., RF Patent 2352384, 2009.

  20. Polyanskii, N.G., Gorbunov, G.V., and Polyanskaya, N.L., Metody issledovaniya ionitov (Methods of Studying Ion-Exchange Resins), Moscow: Khimiya, 1976.

    Google Scholar 

  21. Demin, A.V., and Zabolotskii, V.I., Elektrokhimiya, 2008, vol. 44, p. 1140 [Russ. J. Electrochem. (Engl. Transl.), 2008, vol. 44, pp. 1058–1064].

    Google Scholar 

  22. Zabolotskii, V.I., and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transport in Membranes), Moscow: Nauka, 1996.

    Google Scholar 

  23. Vol’fkovich, Yu.M., Luzhin, V.I., Vanyulin, A.N., Shkol’nikov, E.I., and Blinov, I.A., Elektrokhimiya, 1984, vol. 20, p. 656.

    Google Scholar 

  24. Karpenko, L.V., Demina, O.A., Dvorkina, G.A., Parshikov, S.B., Larchet, C., Auclair, B., and Berezina, N.P., Elektrokhimiya, 2001, vol. 37, p. 328 [Russ. J. Electrochem. (Engl. Transl.), 2001, vol. 37, pp. 287–293].

    Google Scholar 

  25. Kressman, T.R.E., Stanbridge, P.A., and Tye, F.L., Trans. Faraday Soc., 1963, vol. 59, p. 2129.

    Article  CAS  Google Scholar 

  26. Stewart, R.J., and Graydon, W.P., J. Phys. Chem., 1957, vol. 61, p. 164.

    Article  CAS  Google Scholar 

  27. Gnusin, N.P., Demina, O.A., Berezina, N.P., and Meshechkov, A.I., Elektrokhimiya, 1988, vol. 24, p. 364.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zabolotskii.

Additional information

Original Russian Text © V.I. Zabolotskii, K.V. Protasov, M.V. Sharafan, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 9, pp. 1044–1051.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskii, V.I., Protasov, K.V. & Sharafan, M.V. Sodium chloride concentration by electrodialysis with hybrid organic-inorganic ion-exchange membranes: An investigation of the process. Russ J Electrochem 46, 979–986 (2010). https://doi.org/10.1134/S1023193510090028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510090028

Key words

Navigation