Skip to main content
Log in

Electrochemical characteristics of platinum-based binary catalysts for middle-temperature hydrogen-air fuel cells with phosphoric acid electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The high-temperature synthesis based on commercial catalyst E-TEK (40% Pt) using cobalt, chromium, and iron organic precursors as well as d-metal salts yielded PtM (1:1) catalysts (PtCo, PtCr, PtMn, PtNi, PtFe, and PtV) for electroreduction of molecular oxygen in concentrated H3PO4 at the temperature of 160°C. The phase composition of the synthesized catalysts was studied by powder diffraction. The electrochemical measurements were carried out in 15 M H3PO4 at 20 and 160°C using a model gas diffusion electrode. An assumption was made that close charging curves recorded for synthesized PtM catalysts in both hydrogen and oxygen adsorption ranges were due to formation of the core-shell structure: alloy core and surface layers enriched with platinum. The Tafel curves of molecular oxygen reduction in 15 M H3PO4 at 160°C were characterized with the sole slope of 0.10 to 0.11 V. The catalytic activity in the range of potentials from 0.8 to 0.9 V (RHE) was shown approximately twice as that of pure platinum catalyst. The highest activity was recorded for PtCo and PtCr binary catalysts. Their use in middle-temperature hydrogen-air fuel cells with solid polymeric electrolyte based on polybenzimidazole doped with phosphoric acid enabled 2- to 3-fold decrease of the platinum share in the cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qinfeng, Li., Ronghuan, He., Gao, J.A., Jensen, J.O., and Bjerrum, N.J., J. Electrochem. Soc., 2003, vol. 150.

  2. Pereira, L.G.S., Paganin, V.A., and Ticianelli, E.A., Electrochim. Acta, 2009, vol. 54, p. 1992.

    Article  CAS  Google Scholar 

  3. Zhenyu, Liu, Wainright, J.S., Litt, M.H., and Savinell, R.F., Electrochim. Acta, 2006, vol. 51, p. 3914.

    Article  Google Scholar 

  4. Landsmann, D.A. and Luczak, F.J., Handbook of Fuel Cells, 2003, vol. 4.

  5. Wang, J.T., Savinell, R.F., Wainringht, J.S., Litt, M.H., and Yu, H., Electrochim. Acta, 1996, vol. 41, p. 193.

    Article  CAS  Google Scholar 

  6. Modestov, A.D., Tarasevich, M.R., Leikin, A.Yu., Filimonov, V.Ya., and Zagudaeva, N.M., Al’Ternativnaya Energetika I Ekologiya, 2008, no. 10, p. 83.

  7. Tarasevich, M.R., Lubnin, E.N., Zagudaeva, N.M., and Maleeva, E.A., Korroziya: Materialy, Zashchita, 2007, no. 10, p. 15.

  8. Stonehard, P., J. Appl. Electrochem., 1992, vol. 22, p. 995.

    Article  Google Scholar 

  9. Thompsett, D., Handbook of Fuel Cells, 2003, vol. 3.

  10. Jalan, V.M., US Pat. 507907, 1992.

  11. Zagudaeva, N.M., Tarasevich, M.R., and Maleeva, E.A., Al’Ternativnaya Energetika I Ekologiya, 2007, no. 2, p. 110.

  12. Breault, R.D., Handbook of Fuel Cells, 2003, vol. 4.

  13. Bogdanovskaya, V.A., Tarasevich, M.R., Kuznetsova, L.N., and Radina, M.V., Zh. Fiz. Khim., 2009, vol. 83, p. 2244 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 83, p. ].

    Google Scholar 

  14. Zagudaeva, N.M., Tarasevich, M.R., and Maleeva, E.A., Al’Ternativnaya Energetika I Ekologiya, 2007, no. 8, p. 79.

  15. Landsmann, D.A. and Luczak, F.J.., US Pat. 4 316 944, 1982.

  16. Antolini, E., Salgado, Jose R.C., and Gonzalez, E., J. Power Sources, 2006, vol. 160, p. 957.

    Article  CAS  Google Scholar 

  17. Nilekar, A.U., Xu, Y., Zhang, J., Vukmirovic, M.B., Sasaki, K., Adzic, R., and Mavrikakis, M., Top. Catalysis, 2007, vol. 46, p. 276.

    Article  CAS  Google Scholar 

  18. Kitchin, J.R., Norskov, J.K., Barteau, M.A., and Chen, J.G., J. Chem. Phys., 2004, vol. 120, p. 10240.

    Article  CAS  Google Scholar 

  19. Goreeley, J., Norskov, J.K., and Mavrikakis, M., Ann. Rev. Phys. Chem., 2002, vol. 53, p. 319.

    Article  Google Scholar 

  20. Tarasevich, M.R., Elektrokhimiya, 1973, vol. 9, p. 578.

    Google Scholar 

  21. Tarasevich, M.R., Sadkovsky, A., and Yeager, E., Comprehensive Treatise of Electrochemistry, New York: Plenum, 1982, vol. 7, p. 301.

    Google Scholar 

  22. Damjanovic, A., Genshaw, M.A., and Bockris, J.O.M., J. Chem. Phys., 1966, vol. 45, p. 4057.

    Article  CAS  Google Scholar 

  23. Huang, J.C., Sen, R.K., and Yeager, E., J. Electroanal. Chem., 1979, vol. 126, p. 786.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zagudaeva.

Additional information

Original Russian Text © N.M. Zagudaeva, M.R. Tarasevich, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 5, pp. 562–568.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagudaeva, N.M., Tarasevich, M.R. Electrochemical characteristics of platinum-based binary catalysts for middle-temperature hydrogen-air fuel cells with phosphoric acid electrolyte. Russ J Electrochem 46, 530–536 (2010). https://doi.org/10.1134/S102319351005006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351005006X

Key words

Navigation