Skip to main content
Log in

Peculiarities of mass transfer and natural convection in the redox system [Fe(CN)6]3−/[Fe(CN)6]4− with current flowing through a microorifice in insulating coating on the electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Variations in the current in the [Fe(CN)6]3−/[Fe(CN)6]4− system flowing through a vertical microorifice in the insulating film on the electrode are shown. Steady- and nonsteady-state conditions of electrolysis are studied for different insulating film thicknesses. The obtained results suggest that at steady-state electrolysis, in an insulator channel, near the electrode, a “stagnant zone” is formed in which the natural convection of electrolyte is weak. Mass transfer in this zone preferentially occurs due to the reagent diffusion. The length of this zone increases with the increase in the channel length. A zone with the natural convection of electrolyte is located at a certain distance from the electrode, closer to the insulator surface. A part of this zone is located in the solution bulk and its thickness is independent of the channel length. The mass transfer in this zone is realized by both the reagent diffusion and the natural convection of electrolyte. Voltammetric measurements show that at sufficiently high potential scanning rates, the peak currents on a planar electrode and on an electrode placed on the bottom of the channel in the insulating film virtually coincide. This result points to the possibility of using potentiodynamic methods for analyzing the electrolyte composition inside the channel and in the solution bulk irrespective of the thickness of the electrode-insulating film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mehdizadeh, S., Dukovic, J.O., Andricacos, P.S., Romankiw, L.T., and Cheh, H.Y., J. Electrochem. Soc., 1992, vol. 139, p. 78.

    Article  CAS  Google Scholar 

  2. Andricacos, P.S., Uzoh, C., Dukovic, J.O., Horkans, J., and Deligianni, H., IBM J. Res. Dev., 1998, vol. 42, p. 567.

    Article  CAS  Google Scholar 

  3. Maner, A., Harsch, S., and Ehrfeld, W., Plat. Surf. Finish., 1988, vol. 75, no. 3, p. 60.

    CAS  Google Scholar 

  4. Ehrfeld, W. and Lehr, L., Radiat. Phys. Chem., 1995, vol. 45, no. 3, p. 349.

    Article  CAS  Google Scholar 

  5. Landolt, D., Electrochem J. Soc, 2002, vol. 149, p. 9.

    Article  Google Scholar 

  6. Nilson, R.H. and Griffiths, S.K., J. Electrochem. Soc., 2003, vol. 150, p. 401.

    Article  Google Scholar 

  7. Higdon, J.J.L., J. Fluid Mech., 1985, vol. 159, p. 195.

    Article  CAS  Google Scholar 

  8. Laitinen, H.A. and Kolthoff, I.M., J. Am. Chem. Soc., 1939, vol. 61, p. 3344.

    Article  CAS  Google Scholar 

  9. West, A.C. and Newman, J., J. Electrochem. Soc., 1991, vol. 138, p. 1620.

    Article  CAS  Google Scholar 

  10. Diem, C.B., Newman, B., and Orazem, M.E., J. Electrochem. Soc., 1991, vol. 138, p. 2947.

    Article  Google Scholar 

  11. Dinan, T.E., Matlosz, M., and Landolt, D., J. Electrochem. Soc., 1991, vol. 138, p. 2947.

    Article  CAS  Google Scholar 

  12. Roy, S., Gupte, Y., and Green, T.A., Chem. Eng. Sci., 2001, vol. 56, p. 5025.

    Article  CAS  Google Scholar 

  13. Georgiadou, M., Mohr, R., and Alcire, R., J. Electrochem. Soc., 2000, vol. 147, p. 3021.

    Article  CAS  Google Scholar 

  14. Griffiths, S.K. and Nilson, R.H., Microsystem Technologies, 2002, vol. 8, p. 335.

    Article  CAS  Google Scholar 

  15. Desilvestro, J. and Haas, O., Electrochim. Acta, 1991, vol. 36, p. 361.

    Article  CAS  Google Scholar 

  16. Stevens, N.P.C., Rooney, M.B., Bond, A.M., and Feldberg, S.W., J. Phys. Chem., 2001, vol. A105, p. 9085.

    Google Scholar 

  17. Grigin, A.P. and Davydov, A.D., Elektrokhimiya, 1998, vol. 34, p. 1111 [Russ. J. Electrochem. (Engl. Transl.), vol. 34, p. ].

    CAS  Google Scholar 

  18. Duchanoy, C., Lapicque, F., Oduoza, C.F., and Wragg, A.A., Electrochim. Acta, 2000, vol. 46, p. 433.

    Article  CAS  Google Scholar 

  19. Volgin, V.M. and Davydov, A.D., Elektrokhimiya, 2006, vol. 42, p. 567 [Russ. J. Electrochem. (Engl. Transl.), vol. 42, p. ].

    CAS  Google Scholar 

  20. Wragg, A.A. and Krysa, J., J. Appl. Electrochem., 2007, vol. 37, p. 33.

    Article  CAS  Google Scholar 

  21. Randles, J.E.B., Trans. Faraday Soc., 1948, vol. 44, p. 327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zelinskii.

Additional information

Original Russian Text © A.G. Zelinskii, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 4, pp. 454–461.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelinskii, A.G. Peculiarities of mass transfer and natural convection in the redox system [Fe(CN)6]3−/[Fe(CN)6]4− with current flowing through a microorifice in insulating coating on the electrode. Russ J Electrochem 46, 431–437 (2010). https://doi.org/10.1134/S1023193510040087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510040087

Key words

Navigation