Skip to main content
Log in

Fuel cell oxygen cathode with Nafion and platinum: the effect of active layer heating on overall cathode characteristics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A fuel cell with Nafion and platinum is considered. The effect of heating of the oxygen cathode active layer on the cathode overall characteristics (current and power density) is taken into account for the first time. Attention is focused on calculations of Tafel plots of oxygen cathodes and also on how the active layer temperature changes with the potential. Calculation parameters are as follows: fuel cell initial temperature, cathode active layer thickness, gas-diffusion layer effective heat conductivity and thickness. The following conditions of cathode operation are studied: (1) heat formed in the cathode active layer is almost completely removed, no active layer heating is observed, the active-layer temperature remains equal to that of fuel cell operation; (2) heat removal is impeded, the heat conductivity of the gas-diffusion layer is insufficiently high to remove heat. In the latter case, the active layer temperature may increase by several tens of degrees. A fundamental difference of Tafel plots for the catalytic layers studied in model experiments and the cathodic active layers is demonstrated. In the latter case, the first Tafel plot segment may extend further up to potentials of ∼0.6 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damjanovic, A., Genshaw, M.A., and Bockris, J.O., ’M, J. Phys. Chem., 1996, vol. 45, p. 4057.

    Google Scholar 

  2. Appleby, A.J., J. Electrochem. Soc., 1970, vol. 117 P, p. 328.

    Article  Google Scholar 

  3. Sepa, D.B., Vojnovic, V., and Damjanovic, A., Electrochim. Acta, 1981, vol. 26, p. 781.

    Article  CAS  Google Scholar 

  4. Parthasarathy, A., Martin, C.R., and Srinivasan, S., J. Electrochem. Soc., 1991, vol. 138, p. 916.

    Article  CAS  Google Scholar 

  5. Zinola, C.F., Luna, A.M., and Arvia, A.J., Electrochim. Acta, 1994, vol. 39, p. 1951.

    Article  CAS  Google Scholar 

  6. Grgur, B.N., Markovic, N.M., and Ross, P.N., Can. J. Chem., 1997, vol. 75, p. 1465.

    Article  CAS  Google Scholar 

  7. Paulus, U.A., Schmidt, T.J., Gasteiger, H.A., and Behm, R.J., J. Electrochem. Soc., 2001, vol. 495, p. 134.

    CAS  Google Scholar 

  8. Antoine, O., Bultel, Y., and Durand, R., J. Electroanal. Chem., 2001, vol. 499, p. 85.

    Article  CAS  Google Scholar 

  9. Paulus, U.A., Wokaun, A., Scherer, G.G., Schmidt, T.J., Stamenkovic, V., Radmilovic, V., Markovic, N.M., and Ross P.N., J. Phys. Chem. B, 2002, vol. 106 P, p. 4181.

    Article  Google Scholar 

  10. Murthi, V.S., Urian, R.C., and Mukerjee, S., J. Phys. Chem. B, 2004, vol. 108, p. 11011.

    Article  CAS  Google Scholar 

  11. Wakabayashi, N., Takeichi, M., Uchida, H., and Watanabe, M., J. Phys. Chem. B, 2005, vol. 109 P, p. 5836.

    Article  Google Scholar 

  12. Neyerlin, K.C., Gu, W., Jorne, J., and Gasteiger, H.A., J. Electrochem. Soc., 2006, vol. 153, p. A1955.

    Article  CAS  Google Scholar 

  13. Mukerjee, S., Srinivasan, S., and Appleby, A.J., Electrochim. Acta, 1993, vol. 38, p. 1661.

    Article  CAS  Google Scholar 

  14. Wang, X., Hsing, I.-M., and Yue, P.L., J. Power Sources, 2001, vol. 96, p. 282.

    Article  CAS  Google Scholar 

  15. Gasteiger, H.A., Gu, W., Makharia, R., Mathias, M.F., and Sompalli, B., in Handbook of Fuel Cells — Fundamentals, Technology and Applications, V. 3, Vielstich, W., Lamm, A., and Gasteiger, H., Eds., 2003, Chichester, UK: Wiley, p. 593.

    Google Scholar 

  16. Thompsett, D., in Handbook of Fuel Cells — Fundamentals, Technology and Applications, V. 3, Vielstich, W., Lamm, A., and Gasteiger, H., Eds., 2003, Chichester, UK: Wiley, p. 467.

    Google Scholar 

  17. Gasteiger, H.A., Panels, J.E., and Yan, S.G., J. Power Sources, 2004, vol. 127, p. 162.

    Article  CAS  Google Scholar 

  18. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Applied Catalysis B: Environmental, 2005, vol. 56, p. 9.

    Article  CAS  Google Scholar 

  19. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 1036; 2005, vol. 41, p. 1109; 2006, vol. 42, p. 799; 2007, vol. 43, p. 827.

    Google Scholar 

  20. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2006, vol. 42, p. 806.

    Google Scholar 

  21. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2009, vol. 45, p. 193.

    Google Scholar 

  22. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2008, vol. 44, p. 1321.

    Google Scholar 

  23. Costamagna, P. and Srinivasan, S., J. Power Sources, 2001, vol. 102, pp. 242, 253.

    Article  CAS  Google Scholar 

  24. Kocha, S.S., in Handbook of Fuel Cells — Fundamentals, Technology and Applications. V. 3, Vielstich, W., Lamm, A., and Gasteiger, H., Eds., 2003, Chichester, UK: Wiley, p. 538.

    Google Scholar 

  25. Gasteiger, H., Gu, W., Makharia, R., Mathias, M.F., and Sompalli, B., in Handbook of Fuel Cells — Fundamentals, Technology and Applications. V. 3, Vielstich, W., Lamm, A., and Gasteiger, H., Eds., 2003, Chichester, UK: Wiley, p. 593.

    Google Scholar 

  26. Parthasarathy, A., Srinivasan, S., Appleby, A.J., and Martin, C.R., J. Electrochem. Soc., 1992, vol. 139 P, p. 2530.

    Article  Google Scholar 

  27. Mitsushima, S., Araki, N., Kamiya, N., and Ota, K., J. Electrochem. Soc., 2002, vol. 149, p. A1371.

    Article  Google Scholar 

  28. Fuller, T. and Newman, J., J. Electrochem. Soc., 1993, vol. 140, p. 1218.

    Article  CAS  Google Scholar 

  29. Nguyen, T. and White, R., J. Electrochem. Soc., 1993, vol. 140, p. 2178.

    Article  CAS  Google Scholar 

  30. Ju, H., Meng, H., and Wang, C.-Y., Int. J. Heat Mass Transfer, 2005, vol. 48 P, p. 1303.

    Article  Google Scholar 

  31. Ramousse, J., Deseure, J., Lottin, O., Didierjean, S., and Maillet, D., J. Power Sources, 2005, vol. 145, p. 416.

    Article  CAS  Google Scholar 

  32. Khandelwal, M. and Mench, M.M., J. Power Sources, 2006, vol. 161, p. 1106.

    Article  CAS  Google Scholar 

  33. Newman, J., in Electrochemical Systems, 1991, Eaglewood Cliffs: Prentice Hall, p. 290.

    Google Scholar 

  34. Ramousse, J., Didierjean, S., Lottin, O., and Maillet, D., Int. J. Thermal Sciences, 2008, vol. 47, p. 1.

    Article  Google Scholar 

  35. Vie, J.S.P. and Kjelstrup, S., Electrochim. Acta, 2004, vol. 49, p. 1069.

    Article  CAS  Google Scholar 

  36. Shimpalee, S., Beuscher, U., and Van Zee, J.W., Electrochim. Acta, 2007, vol. 52, p. 6748.

    Article  CAS  Google Scholar 

  37. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2007, vol. 43, p. 827.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, 2009, published in Elektrokhimiya, 2009, Vol. 45, No. 9, pp. 1102–1112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Fuel cell oxygen cathode with Nafion and platinum: the effect of active layer heating on overall cathode characteristics. Russ J Electrochem 45, 1027–1036 (2009). https://doi.org/10.1134/S1023193509090079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193509090079

Key words

Navigation