Skip to main content
Log in

Prediction of transport properties of new functional materials based on lanthanum-strontium cuprates: Molecular mechanics calculations

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The method of molecular dynamics is used for prediction of properties of new functional materials based on lanthanum-strontium cuprates La2 − x Sr x CuO4 − δ as new materials of the solid state ionics. The most interesting phases are synthesized to test the obtained calculation data and their electrophysical and thermomechanical characteristics are studied. It is shown that the high values of the oxygen diffusion coefficients are obtained in the La2 − x Sr x CuO4 − δ solid solutions with a high replacement degree of Sr → La (up to x = 1). The calculated values of lattice cell parameters, thermal expansion coefficients and oxygen diffusion coefficients agree with the experimental data. The observed anisotropy of anionic transport for all the studied compositions corresponds to the regularities of crystal structure of complex oxides. Using the molecular dynamics method allows tracing the contribution of separate types of oxygen ions (equatorial and apical) into ionic transport at the microscopic level and also confirming directly that oxygen diffusion occurs according to the usual jump mechanism, mainly in (CuO2) layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, H.-C. and Fung, K.-Z., Mater. Res. Bull., 2003, vol. 38, p. 231.

    Article  CAS  Google Scholar 

  2. Kanai, H., Mizusaki, J., Tagawa, H., Hoshiyama, S., Hirano, K., Fujita, K., Tezuka, M., and Hashimoto, T., J. Solid State Chem., 1997, vol. 131, p. 150.

    Article  CAS  Google Scholar 

  3. Opila, E.J. and Tuller, H.L., J. Am. Ceram. Soc., 1994, vol. 77, p. 2727.

    Article  CAS  Google Scholar 

  4. Su, M.-Y., Cooper, E.A., Elsbernd, C.E., and Mason, T.O., J. Am. Ceram. Soc., 1990, vol. 73, p. 3453.

    Article  CAS  Google Scholar 

  5. Hong, D.J.L. and Smyth, D.M., J. Solid State Chem., 1992, vol. 97, p. 427.

    Article  CAS  Google Scholar 

  6. Longo, J.M. and Raccah, P.M., J. Solid State Chem., 1973, vol. 6, p. 526.

    Article  CAS  Google Scholar 

  7. Grande, B. and Müller-Buschbaum, H., Z. Anorg. Allg. Chem., 1977, vol. 428, p. 120.

    Article  CAS  Google Scholar 

  8. Maier, J. and Pfundtner, G., Adv. Mater., 1991, vol. 3, p. 292.

    Article  CAS  Google Scholar 

  9. Hong, D.J.L. and Smyth, D.M., J. Solid State Chem., 1993, vol. 102, p. 250.

    Article  CAS  Google Scholar 

  10. Savvin, S.N., Cand. Sci. (Chem.) Dissertation, Moscow: MGU, 2005.

    Google Scholar 

  11. Opila, E.J., Pfundtner, G., Maier, J., Tuller, H.L., and Wuensch, B.J., Mater. Sci. Eng., B., 1992, vol. 13, p. 165.

    Article  Google Scholar 

  12. Shen, L., Salvador, P.A., and Mason, T.O., J. Am. Ceram. Soc., 1994, vol. 77, p. 81.

    Article  CAS  Google Scholar 

  13. Riz, A., In: “Fizicheskie metody issledovaniya i svoistva neorganicheskikh soedinenii” (Physical Research Methods and Properties of Inorganic Compounds), Moscow: “Mir”, 1970.

    Google Scholar 

  14. Nguyen, N., Choisnet, J., Hervieu, M., and Raveau, B., J. Solid State Chem., 1981, vol. 39, p. 120.

    Article  CAS  Google Scholar 

  15. Smith, W., Todorov, I.T., and Leslie, M., Z. Kristallogr., 2005, vol. 220, p. 563.

    Article  CAS  Google Scholar 

  16. Popov, V.N., J. Phys.: Condens. Matter, 1995, vol. 7, p. 1625.

    Article  CAS  Google Scholar 

  17. Chaplot, S.L., Phys. Rev. B:, 1990, vol. 42, p. 2149.

    Article  CAS  Google Scholar 

  18. Chaplot, S.L., Reichardt, W., Pintschovius, L., and Pyka, N., Phys. Rev. B:, 1995, vol. 52, p. 7230.

    Article  CAS  Google Scholar 

  19. Berendsen, H.J.C., Postma, J.P.M., Van Gusteren, W.F., Di Nola, A., and Haak, J.R., J. Chem. Phys., 1984, vol. 81, p. 3684.

    Article  CAS  Google Scholar 

  20. Mazo, G.N., Savvin, S.N., Dobrovol’skii, Yu.A., and Leonova, L.S., Elektrokhimiya, 2005, vol. 41, p. 516 [Russ. J. Elektrochem. (Engl. Transl.), vol. 41, p. 448].

    Google Scholar 

  21. Mazo, G.N., Savvin, S.N., Abakumov, A.M., Khadermann, I., Dobrovol’skii, Yu.A., and Leonova, L.S., Elektrokhimiya, 2007, vol. 43, p. 459 [Russ. J. Elektrochem. (Engl. Transl.), vol. 43, p. 436].

    Google Scholar 

  22. Hadermann, J., Perez, O., Creon, N., Michel, C., and Hervieu, M., J. Mater. Chem., vol. 17, p. 2344.

  23. Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge: Cambridge Univ. Press, 2004.

    Google Scholar 

  24. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Clarendon Press, 1991.

    Google Scholar 

  25. Wang, H.H., Geiser, U., Thorn, R.J., Carlson, K.D., Beno, M.A., Monaghan, M.R., Allen, T.J., Proksch, R.B., Stupka, D.L., Kwok, W.K., Crabtree, G.W., and Williams, J.M., Inorg. Chem., 1987, vol. 26, p. 1190.

    Article  CAS  Google Scholar 

  26. Goodenough, J.B., Demazeau, G., Pouchard, M., and Hagenmuller, P., J. Solid State Chem., 1973, vol. 8, p. 325.

    Article  CAS  Google Scholar 

  27. Gurevich, Yu.Ya. and Kharkats, Yu.I., Superionnye provodniki (Superionic Conductors), Moscow: Nauka, 1992.

    Google Scholar 

  28. Savvin, S.N., Mazo, G.N., and Ivanov-Schitz, A.K., Defect and Diffusion Forum, 2005, vol. 242–244, p. 27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ivanov-Shits.

Additional information

Original Russian Text © A.K. Ivanov-Shits, G.N. Mazo, S.N. Savvin, S.N. Putilin, A.S. Samokhin, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 12, pp. 1458–1465.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov-Shits, A.K., Mazo, G.N., Savvin, S.N. et al. Prediction of transport properties of new functional materials based on lanthanum-strontium cuprates: Molecular mechanics calculations. Russ J Electrochem 44, 1359–1365 (2008). https://doi.org/10.1134/S1023193508120082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508120082

Key words

Navigation