Skip to main content
Log in

Ion Mobility in Triple Sodium Molybdates and Tungstates with a NASICON Structure

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Research data for the diffusion mechanisms of Na+ ions in Na1 – xMg1 – xAl1 + x(XO4)3 (X = Mo, W) compounds with the NASICON-type structure (space group R\(\bar {3}\)c, Z = 6) are reported. Solid solutions in the homogeneity range 0.1 ≤ x ≤ 0.5 for X = Mo and 0.4 ≤ x ≤ 0.6 for X = W have been prepared by solid-state synthesis. Conductivity measurements and NMR spectroscopy data indicate fast sodium diffusion in the studied samples: the ionic conductivity reaches the values of about 10–3 S/cm at T > 800 K. The frequency of elementary ionic jumps is on the order of 104 s–1 at T ≈ 500 K, and the activation energy is equal to 0.8–0.9 eV. The results have shown that the ionic conductivity in molybdates is higher than in tungstates. The growth of magnesium concentration increases the concentration of local coordinations Mg2+–Na+–Mg2+, acting as traps for moving sodium ions. The above conclusions are supported by ab initio calculations according to which the barrier for sodium diffusion from the Mg2+–Na+–Mg2+ position is expected to be higher than those for the Mg2+–Na+–Al3+ and Al3+–Na+–Al3+ ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Guin, F. Tietz, and O. Guillon, Solid State Ionics 293, 18 (2016).

    Article  Google Scholar 

  2. J. K. Kim, Y. J. Lim, H. Kim, et al., Energy Environ. Sci. 8, 3589 (2015).

    Article  Google Scholar 

  3. T. L. Kulova and A. M. Skundin, Elektrokhim. Energet. 16, 122 (2016).

    Google Scholar 

  4. Firouzi, R. Qiao, S. Motallebi, et al., Nat. Commun. 9, 861 (2018).

    Article  ADS  Google Scholar 

  5. A. M. Skundin, T. L. Kulova, and A. B. Yaroslavtsev, Russ. J. Electrochem. 54, 113 (2018).

    Article  Google Scholar 

  6. G. G. Eshetu, G. A. Elia, M. Armand, et al., Adv. Energy Mater. 10, 2000093 (2020).

  7. N. Anantharamulu, R. K. Koteswara, G. Rambabu, et al., J. Mater. Sci. 46, 2821 (2011).

    Article  ADS  Google Scholar 

  8. Y. Noguchi, E. Kobayashi, L. S. Plashnitsa, et al., Electrochim. Acta 101, 59 (2013).

    Article  Google Scholar 

  9. M. Mhiri, B. Badri, M. L. Lopez, et al., Ionics 21, 2511 (2015).

    Article  Google Scholar 

  10. Z. Jian, Y. S. Hu, X. Ji, and W. Chen, Adv. Mater. 29, 1601925 (2017).

  11. M. I. Kimpa, M. Z. H. Mayzan, J. A. Yabagi etal., IOP Conf. Ser. Earth Environ Sci. 140, 012156 (2018).

  12. S. R. S. Prabaharan, A. Fauzi, M. S. Michael, and K. M. Begam, Solid State Ionics 171, 157 (2004).

    Article  Google Scholar 

  13. V. I. Pet’kov, Russ. Chem. Rev. 81, 606 (2012).

    Article  ADS  Google Scholar 

  14. V. Palomares, P. Serras, I. Villaluenga, et al., Energy Environ. Sci. 5, 5884 (2012).

    Article  Google Scholar 

  15. S. Chen, C. Wu, L. Shen, et al., Adv. Mater. 29, 1700431 (2017).

  16. N. M. Kozhevnikova and I. Yu. Kotova, Russ. J. Inorg. Chem. 45, 96 (2000).

    Google Scholar 

  17. S. Zhou, G. Barim, B. J. Morgan, et al., Chem. Mater. 28, 4492 (2016).

    Article  Google Scholar 

  18. D. Du, R. Lan, K. Xie, et al., RSC Adv. 7, 13304 (2017).

    Article  ADS  Google Scholar 

  19. K. Feng, F. Wang, H. Zhang, et al., J. Mater. Chem. A 6, 19107 (2018).

    Article  Google Scholar 

  20. M. Sonni, I. Jendoubi, and M. F. Zid, Acta Crystallogr., E 74, 406 (2018).

    Article  Google Scholar 

  21. N. M. Kozhevnikova and M. V. Mokhosoev, Triple Molybdates (Buryat. Gos. Univ., Ulan-Ude, 2000) [in Russian].

    Google Scholar 

  22. I.Yu. Kotova, S. F. Solodovnikov, Z. A. Solodovnikova, and E. G. Khaikina, Nauch. Obozren., No. 5, 143 (2016).

  23. I. Yu. Kotova, Cand. Sci. (Chem.) Dissertation (Ulan-Ude, 2001).

  24. N. M. Kozhevnikova and A. V. Imekhenova, Russ. J. Inorg. Chem. 51, 537 (2006).

    Article  Google Scholar 

  25. N. M. Kozhevnikova and A. V. Imekhenova, Russ. J. Inorg. Chem. 54, 638 (2009).

    Article  Google Scholar 

  26. B. I. Lazoryak and V. A. Efremov, Zh. Neorg. Khim. 32, 652 (1987).

    Google Scholar 

  27. N. M. Kozhevnikova, Russ. J. Inorg. Chem. 59, 838 (2014);

    Article  Google Scholar 

  28. Russ. J. Inorg. Chem. 59, 992 (2014).

  29. N. M. Kozhevnikova and S. Yu. Tsyretarova, Russ. J. Inorg. Chem. 60, 520 (2015).

    Article  Google Scholar 

  30. N. I. Sorokin, Phys. Solid State 51, 1128 (2009).

    Article  ADS  Google Scholar 

  31. H. Li, L. Zhang, and G. Wang, J. Alloys Compd. 478, 484 (2009).

    Article  Google Scholar 

  32. B. Xiao, Z. Lin, L. Zhang, et al., PLoS One 7, e40631 (2012).

  33. Y. Pan, Y. Chen, Y. Lin, et al., Cryst. Eng. Commun. 14, 3930 (2012).

    Article  Google Scholar 

  34. J. Hu, X. Gong, J. Huang, et al., Opt. Mater. Express 6, 190 (2016).

    ADS  Google Scholar 

  35. G. Q. Wang, X. H. Gong, Y. J. Chen, et al., Dalton Trans. 46, 6776 (2017).

    Article  Google Scholar 

  36. T. S. Spiridonova, S. F. Solodovnikov, A. A. Savina, et al., Acta Crystallogr., B 76, 28 (2020).

    Article  Google Scholar 

  37. B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  Google Scholar 

  38. A. C. Larson and R. B. von Dreele, Los Alamos Natl. Labor. Rep. LAUR 86-748 (Los Alamos, NM, 2004).

  39. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  40. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  41. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  42. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  43. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  44. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  45. D. M. Bylander, L. Kleinman, and S. Lee, Phys. Rev. B 42, 1394 (1990).

    Article  ADS  Google Scholar 

  46. H. M. Petrilli, P. E. Blöchl, P. Blaha, and K. Schwarz, Phys. Rev. B 57, 14690 (1998).

    Article  ADS  Google Scholar 

  47. H. Jonsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, Ed. by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), p. 385.

    Google Scholar 

  48. D. Massiot, F. Fayon, M. Capron, et al., Magn. Reson. Chem. 40, 70 (2002).

    Article  Google Scholar 

  49. A. L. Buzlukov, N. I. Medvedeva, Y. V. Baklanova, et al., Solid State Ionics 351, 115328 (2020).

  50. I. Yu. Kotova, D. A. Belov, and S. Yu. Stefanovich, Russ. J. Inorg. Chem. 56, 1189 (2011).

    Article  Google Scholar 

  51. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

  52. C. P. Slichter, Principles of Magnetic Resonance (Harper and Row, London, 1992).

    Google Scholar 

  53. Dzh. Uo and E. I. Fedin, Sov. Phys. Solid State 4, 1633 (1962).

  54. J. H. van Vleck, Phys. Rev. 74, 1168 (1948).

    Article  ADS  Google Scholar 

  55. A. L. Buzlukov, I. Yu. Arapova, S. V. Verkhovskii, et al., J. Solid State Electrochem. 20, 609 (2016).

    Article  Google Scholar 

  56. A. L. Buzlukov, I. Yu. Arapova, Y. V. Baklanova, et al., J. Phys. Chem. C 120, 23911 (2016).

    Article  Google Scholar 

  57. P. W. Jaschin, Y. Gao, Y. Li, and S. Bo, J. Mater. Chem. A 8, 2875 (2020).

    Article  Google Scholar 

Download references

Funding

The investigation was supported by the Russian Science Foundation (grant no. 18-12-00395).

V.V. Ogloblichev is kindly grateful to the Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A19-119012990095-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Buzlukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzlukov, A.L., Fedorov, D.S., Serdtsev, A.V. et al. Ion Mobility in Triple Sodium Molybdates and Tungstates with a NASICON Structure. J. Exp. Theor. Phys. 134, 42–50 (2022). https://doi.org/10.1134/S1063776122010071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122010071

Navigation