Skip to main content
Log in

Comparison of the performances of Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2, and Nb/BDD anodes on electrochemical degradation of azo dye

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the preparation conditions of antimony-doped SnO2 and PbO2 electrode were optimized for the degradation activity of AO7 dye solution. The results showed that when the doping content of Sb is 8 mol %(SnO2-Sb(0.08)), the SnO2 electrode exhibited best activities for the decolorization and mineralization of AO7. The concentration of NaF in electroplating solution had a noticeable effect on PbO2 electrode for the decolorization of AO7 solution, but little influence on the COD removal rate. The anodic stability tests showed that the electrode prepared in the solution containing 0.10 g l−1 NaF (PbO2-F(0.10)) was best for environmental application. The comparison of SnO2-Sb(0.08), PbO2-F(0.10) and Boron-doped Diamond (BDD) electrodes revealed that a more rapid decolorization rate was obtained on SnO2-Sb(0.08) and PbO2-F(0.10) electrodes in dilute AO7 solutions, while higher COD removal rate of concentrated AO7 solutions was on BDD and SnO2-Sb(0.08) electrodes. The effect of concentration of Na2SO4 on the degradation rate of AO7 was very notable on BDD electrode for its highest overpotential of oxygen evolution reaction. In the chloride-containing medium, the decolorization was accelerated greatly but the completed mineralization of AO7 was inhibited with the increasing of chloride ions concentration when these high-overvoltage anodes were used

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jüttner, K., Galla, B.U., and Schmieder, H., Electrochim. Acta, 2000, vol. 45, p. 2575.

    Article  Google Scholar 

  2. Grimm, J., Bessarabov, D., and Sanderson, R., Desalination, 1998, vol. 115, p. 285.

    Article  CAS  Google Scholar 

  3. Feng, J., Houk, L.L., and Johnson, D.C., J. Electrochem. Soc., 1995, vol. 142, p. 3626.

    Article  CAS  Google Scholar 

  4. Lipp, L. and Pletcher, D., Electrochim. Acta, 1997, vol. 42, p. 1091.

    Article  CAS  Google Scholar 

  5. Tröster, I., Fryda, M., Herrmann, D., Schäfer, L., Hänni, W., Perret, A., Blaschke, M., Kraft, A., and Stadelmann, M., Diamond Related Mater., 2002, vol. 11, p. 640.

    Article  Google Scholar 

  6. Kesselman, J.M., Weres, O., Lewis, N.S., and Hoffmann, M.R., J. Phys. Chem., Ser. B, 1997, vol. 101, p. 2637.

    Article  CAS  Google Scholar 

  7. Xiao-yan, Li, Yu-hong, Cui, Yu-jie, Feng, Zhao-ming, Xie, and Ji-Dong, Gu, Water Res., 2005, vol. 39, p. 1972.

    Article  CAS  Google Scholar 

  8. Tanaka, S., Nakata, Y., Kimura, T., Yustiawati, Kawasaki, M., and Kuramitz, H., J. Appl. Electrochem., 2002, vol. 32, p. 197.

    Article  CAS  Google Scholar 

  9. Roman, I., Vlad, C., and Nita, P., Revista De Chimie, 2005, vol. 56, p. 276–280.

    CAS  Google Scholar 

  10. Kötz, R., Stucki, S., and Carcer, B., J. Appl. Electrochem., 1991, vol. 21, p. 99.

    Article  Google Scholar 

  11. Polcaro, A.M., Palmas, S., Renoldi, F., and Mascia, M., J. Appl. Electrochem., 1999, vol. 29, p. 147.

    Article  CAS  Google Scholar 

  12. Bonfatti, F., Ferro, S., Levezzo, F., Malacarne, M., Lodi, G., and De Battisti, A., J. Electrochem. Soc., 1999, vol. 146, p. 2175.

    Article  CAS  Google Scholar 

  13. Fryda, M., Matthee, Th., Mulcahy, S., Hampel, A., Schafer, L., and Troster, I., Diamond Related Mater., 2003, vol. 12, p. 1950.

    Article  CAS  Google Scholar 

  14. Martinez-Huitle, C.A., Quiroz, M.A., Comninellis, Ch., Ferro, S., and De Battisti, A., Electrochim. Acta, 2004, vol. 50, p. 949.

    Article  CAS  Google Scholar 

  15. Polcaro, A.M., Vacca, A., Palmas, S., and Mascia, M., J. Appl. Electrochem., 2003, vol. 33, p. 885.

    Article  CAS  Google Scholar 

  16. Bellagamba, R., Michaud, P. A., Comninellis, Ch., and Vatistas, N., Electrochem. Commun., 2002, vol. 4, p. 171.

    Article  CAS  Google Scholar 

  17. Martinez-Huitle, C.A., Ferro, S., and De Battisti, A., Electrochim. Acta, 2004, vol. 49, p. 4027.

    Article  CAS  Google Scholar 

  18. Vandevivere, Ph.C., Bianchi, R., and Verstraete, W., J. Chem. Technol. Biotechnol., 1998, vol. 72, p. 289.

    Article  CAS  Google Scholar 

  19. Jia, Jinping, Yang, Ji, Liao, Jun, Wang, WengHua, and Wang, Zijian, Water Res., 1999, vol. 33, p. 881.

    Article  CAS  Google Scholar 

  20. Vlyssides, A.G., Loizidou, M., Karlis, P. K., Zorpas, A.A., and Papaioannou, D., J. Hazardous Mater., Ser. B, 1999, vol. 70, p. 41.

    Article  CAS  Google Scholar 

  21. Vlyssides, A.G., Papaioannou, D., Loizidoy, M., Karlis, P. K., and Zorpas, A.A., Waste Management, 2000, vol. 20, p. 569.

    Article  CAS  Google Scholar 

  22. Chen, Xueming, Chen, Guohua, Yue, and Po Lock, Chem. Eng. Sci., 2003, vol. 58, p. 995.

    Article  CAS  Google Scholar 

  23. Abaci, Serdar, Tamer, Ugur, Pekmez, Kadir, and Yildiz, Attila, Appl. Surf. Sci., 2005, vol. 240, p. 112.

    Article  CAS  Google Scholar 

  24. Zanta, C.L.P.S., Michaud, P. A., Comninellis, C., De Andrade, A.R., and Boodts, J.F.C., J. Appl. Electrochem., 2003, vol. 33, p. 1211.

    Article  CAS  Google Scholar 

  25. Habazaki, H., Hayashi, Y., and Konno, H., Electrochim. Acta, 2002, vol. 47, p. 4857.

    Google Scholar 

  26. Wang, Aimin, Qu, Jiuhui, Ru, Jia, Liu, Huijuan, and Jiantuan, Ge, Dyes Pigments, 2005, vol. 65, p. 227.

    Article  CAS  Google Scholar 

  27. APHA Standard Methods for the Examination of Water and Wastewater, 17 Ed., Washington: American Public Health Association, 1992.

  28. Kötz, R., Stuki, S., and Carcer, B., J. Appl. Electrochem., 1991, vol. 21, p. 14.

    Article  Google Scholar 

  29. Zhang, Jian Rong, Gu, Da, and Yang, Yun Xia, Chin. J. Appl. Chem., 2002, vol. 19, p. 552.

    CAS  Google Scholar 

  30. Hao, Xiaotao, Ma, Jin, Zhang, Deheng, Yang, Yingge, Xu, Xiangang, Chen, Feng, and Ma, Honglei, Appl. Surf. Sci., 2002, vol. 189, p. 157.

    Article  CAS  Google Scholar 

  31. Zhang, Xuejun, Liang, Hongbo, and Gan, Fuxing, Novel Anion Exchange Method for Exact Antimony Doping Control of Stannic Oxide Nanocrytal Powder, J. Am. Ceram. Soc., 2006, vol. 89, p. 792.

    Article  CAS  Google Scholar 

  32. Wang, Y.Q., Tong, H.Y., and Xu, W.L., J. Inorganic Mater., 2003, vol. 18, p. 1033 [In Chinese].

    Google Scholar 

  33. Zhenhai, Liang, Shutian, Bian, Suocai, Ren, and Xinguo, Chen, Rare Metals Mater. and Eng., 2001, vol. 30, p. 232 [In Chinese].

    CAS  Google Scholar 

  34. Casellato, U., Cattarin, S., and Musiani, M., Electrochim. Acta, 2003, vol. 48, p. 3991.

    Article  CAS  Google Scholar 

  35. Mao, Xuhui, Tian, Fang, Gan, Fuxing, Zhang, Xuejun, and Peng, Tianwei, Fresenius Environmental Bull., 2006, vol. 15, p. 188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuxing Gan.

Additional information

Published in Russian in Elektrokhimiya, 2008, vol. 44, No. 7, pp. 865–875.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, X., Tian, F., Gan, F. et al. Comparison of the performances of Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2, and Nb/BDD anodes on electrochemical degradation of azo dye. Russ J Electrochem 44, 802–811 (2008). https://doi.org/10.1134/S1023193508070069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508070069

Key words

Navigation