Skip to main content
Log in

Exaltation effects in the metal electrodeposition from acid electrolytes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The exaltation of mass transfer of discharging cations, caused by the concurrent hydrogen evolution from acidified solutions, results in a sharp increase in the metal deposition rate. In this case the limiting process rate depends linearly on the hydrogen evolution current density; it depends but weakly on the solution agitation and temperature. Under the electrolysis of solutions containing weak acids as a supporting electrolyte, the higher the acid formation constant, the more pronounced is the dependence of the electrodeposition limiting rate on the hydrogen current density. When microelectrodes are used, the varying of the background acid nature may affect the hydrogen evolution rate markedly, while the metal electrodeposition rate mainly depends on the cell voltage. When metals are electrodeposited from complex anions, the parallel hydrogen evolution hinders the mass transfer; this process depends on the anion stability constant and charge, all other conditions being the same. The found peculiarities can be used in the inversion voltammetry for the lowering of the metal detection limit, improving of the analysis selectivity, and time saving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Fizmatgiz, 1959.

    Google Scholar 

  2. Brunner, E., Z. Phys. Chem., 1904, vol. 47, p. 56.

    Google Scholar 

  3. Euken, A., Z. Phys. Chem., 1907, vol. 59, p. 72.

    Google Scholar 

  4. Heyrovsky, J. and Kuta, J., Aklady Polarografie, Prague: Nakl. Cheskoslovenske Akad. Ved., 1965.

    Google Scholar 

  5. Kharkats, Yu.I., in Itogi Nauki Tekh., Ser.: Elektrokhim., Moscow: VINITI, 1991, vol. 38.

    Google Scholar 

  6. Kletenik, Yu.B., Tarasova, V.A., Aleksandrova, T.P., Skvortsova, L.I., Zamyatin, A.P., Kiryushev, V.N., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, p. 51.

    Google Scholar 

  7. Kletenik, Yu.B. and Aleksandrova, T.P., Zh. Anal. Khim., 1997, vol. 52, p. 280 [J. Anal. Chem. (Engl. Transl.), vol. 52, p.].

    Google Scholar 

  8. Newman, J., J. Electrochem. Soc., 1966, vol. 113, p. 501.

    Article  CAS  Google Scholar 

  9. Vetter, K.J., Elektrochemische Kinetik, Berlin: Springer, 1961.

    Google Scholar 

  10. Kharkats, Yu.I., Elektrokhimiya, 1999, vol. 35, p. 1119.

    Google Scholar 

  11. Bek, R.Yu., Shuraeva, L.I., and Skvortsova, L.I., Elektrokhimiya, 2001, vol. 37, p. 241.

    Google Scholar 

  12. Kletenik, Yu.B., Aleksandrova, T.P., Tarasova, V.A., Skvortsova, L.I., Kiryushev, V.N., and Bek, R.Yu. Zh. Anal. Khim., 1999, vol. 54, p. 56.

    Google Scholar 

  13. Bek, R.Yu., Kiryushov, V.N., Skvortsova, L.I., Aleksandrova, T.P., and Tarasova, V.A., Zh. Anal. Khim., 2000, vol. 55, p. 1190.

    Google Scholar 

  14. Ibl, N., Metall Oberfläche, 1970, no. 10, p. 365.

  15. Shuraeva, L.I., Bek, R.Yu., and Skvortsova, L.I., Elektrokhimiya, 1999, vol. 35, p. 649.

    Google Scholar 

  16. Skvortsova, L.I., Tarasova, V.A., Aleksandrova, T.P., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, p. 424.

    Google Scholar 

  17. Shuraeva, L.I., Skvortsova, L.I., and Bek, R.Yu., Elektrokhimiya, 1999, vol. 35, p. 1149.

    Google Scholar 

  18. Spravochnik khimika (Reference Book of Chemist), Moscow: Gos. nauch.-tekhn. izd. khim. lit., 1192, vol. 3.

  19. Dvorak, J., Koryta, J., and Bohackova, V., Elektrochemie, Prague: Academia, 1975.

    Google Scholar 

  20. Kuz’minskaya, G.E., Kublanovskaya, A.N., and Kublanovskii, V.S., Ukr. Khim. Zh., 1949, no. 10, p. 941.

  21. Spravochnik po elektrokhimii (Reference Book in Electrochemistry) Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981, p. 16.

    Google Scholar 

  22. Bek, R.Yu., Shuraeva, L.I., Kiryushov, V.N., and Skvortsova, L.I., Elektrokhimiya, 2000, vol. 36, p. 77.

    Google Scholar 

  23. Bek, R.Yu. and Shuraeva, L.I., Elektrokhimiya, 2001, vol. 37, p. 487.

    Google Scholar 

  24. Bek, R.Yu. and Shuraeva, L.I., Elektrokhimiya, 2001, vol. 37, p. 1327.

    Google Scholar 

  25. Skvortsova, L.I. and Kiryushov, V.N., Zh. Anal. Khim., 2000, vol. 55, p. 512.

    Google Scholar 

  26. Kalcher, K., Liland, W., and Vytras, K., Electroanalysis, 1996, vol. 8, p. 336.

    Article  Google Scholar 

  27. Brainina, Kh.Z., Neiman, E.Ya., and Slepushkin, V.V., Inversionnye vol’tamperometricheskie metody (Stripping Voltametric Methods), Moscow: Khimiya, 1988.

    Google Scholar 

  28. Aleksandrova, T.P., Skvortsova, L.I., Kiryushov, V.N., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, p. 851.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Bek.

Additional information

Original Russian Text © R.Yu. Bek, L.I. Shuraeva, L.I. Skvortsova, T.P. Aleksandrova, V.A. Tarasova, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 4, pp. 533–544.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bek, R.Y., Shuraeva, L.I., Skvortsova, L.I. et al. Exaltation effects in the metal electrodeposition from acid electrolytes. Russ J Electrochem 44, 493–503 (2008). https://doi.org/10.1134/S1023193508040150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508040150

Key words

Navigation