Skip to main content
Log in

Active layer of the oxygen cathode in a fuel cell with Nafion and platinum: The role played by the diffusion and ohmic restrictions and the selection of the working thickness of the active layer

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The basic parameters that characterize the operation of the active layer of a cathode with Nafion are the effective coefficient of the diffusion of oxygen, the effective ionic conductance, and the thickness of the active layer. One of the deficiencies intrinsic to the fuel cells containing Nafion is their extreme sensitivity to the heat and moisture exchange. Nafion demands an optimum degree of humidification. Upon thoroughly draining the active layer of a cathode with Nafion, its effective ionic conductance substantially lowers, and large diffusion restrictions arise following the flooding of pores in the active layer. The goal of this work is to perform a comparison of values of some dimensional characteristics pertaining to the flooded and thoroughly drained active layers of a cathode with similar indicators of an active layer in its optimum (normal) state. It is demonstrated how one should perform the selection of the working thickness of an active layer that would provide for the efficiency of its functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costamagna, P. and Srinivasan, S., J. Power Sources, 2001, vol. 102, P. 242, 253.

    Article  CAS  Google Scholar 

  2. Haile, S.M., Acta Mater., 2003, vol. 51, p. 5981.

    Article  CAS  Google Scholar 

  3. Bagotzky, V.S., Osetrova, N.V., and Skundin, A.M., Elektrokhimiya, 2003, vol. 39, p. 1027.

    Google Scholar 

  4. Weber, A.Z. and Newman, J., Chem. Rev., 2004, vol. 104, p. 4679.

    Article  CAS  Google Scholar 

  5. Mehta, J.S., J. Power Sources, 2003, vol. 114, p. 32.

    Article  CAS  Google Scholar 

  6. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (The Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  7. Chizmadzhev, Yu.A. and Chirkov, Yu.G., Kinetika slozhnykh elektrokhimicheskikh reaktsii, Kazarinov, V.E., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  8. Chizmadzhev, Yu.A. and Chirkov, Yu.G., in Comprehensive Treatise of Electrochemistry, Yeager, E., Bockris, J.O’M., Conway, B.E., and Sarangapani, S., Eds., New York: Plenum, 1983, vol. 6, p. 356.

    Google Scholar 

  9. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2005, vol. 41, p. 1109.

    Google Scholar 

  10. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 1036.

    Google Scholar 

  11. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2006, vol. 42, p. 799.

    Google Scholar 

  12. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2005, vol. 41, p. 35.

    Google Scholar 

  13. Mitsushima, S., Araki, N., Kamiya, N., and Ota, K., J. Electrochem. Soc., 2002, vol. 149, p. A1371.

    Article  Google Scholar 

  14. Parthasarathy, A., Srinivasan, S., Appleby, A.J., and Martin, C.R., J. Electrochem. Soc., 1992, vol. 139, p. 2530.

    Article  CAS  Google Scholar 

  15. Gode, P., Lindbergh, G., and Sundholm, G., J. Electroanal. Chem., 2002, vol. 518, p. 115.

    Article  CAS  Google Scholar 

  16. Giner, J. and Hunter, C., J. Electrochem. Soc., 1969, vol. 116, p. 1124.

    Article  CAS  Google Scholar 

  17. Gloaguen, F. and Durand, R., J. Appl. Electrochem., 1997, vol. 27, p. 1029.

    Article  CAS  Google Scholar 

  18. Broka, K. and Ekdunge, P., J. Appl. Electrochem., 1997, vol. 27, p. 281.

    Article  CAS  Google Scholar 

  19. Boyer, C., Gamburzev, S., and Appleby, A.J., J. Appl. Electrochem., 1999, vol. 29, p. 1095.

    Article  CAS  Google Scholar 

  20. Rowe, A. and Li, X., J. Power Sources, 2001, vol. 102, p. 82.

    Article  CAS  Google Scholar 

  21. Uchida, M., Aoyama, Y., Eda, N., and Ohta, A., J. Electrochem. Soc., 1995, vol. 142, pp. 463, 4143.

    Article  CAS  Google Scholar 

  22. Mauritz, K.A. and Moore, R.B., Chem. Rev., 2004, vol. 104, p. 4535.

    Article  CAS  Google Scholar 

  23. Gierke, T.D. and Hsu, W.Y., Perfluorinated Ionomer Membranes, ACS Symposium Serics no. 180, Eisenberg, A. and Yeager, H.L., Eds., Washington (DC): Amer. Chem. Soc., 1982, p. 283.

    Google Scholar 

  24. Boyer, C., Gamburzev, S., Velev, O., Srinivasan, S., and Appleby, A.J., Electrochim. Acta, 1998, vol. 43, p. 3703.

    Article  CAS  Google Scholar 

  25. Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., J. Electrochem. Soc., 1991, vol. 138, p. 2334.

    Article  CAS  Google Scholar 

  26. Springer, T.E., Wilson, M.S., and Gottesfeld, S., J. Electrochem. Soc., 1993, vol. 140, p. 3513.

    Article  CAS  Google Scholar 

  27. Hsuen, H.-K., J. Power Sources, 2003, vol. 123, p. 26.

    Article  CAS  Google Scholar 

  28. Du, C.Y., Shi, P.F., Cheng, X.Q., and Yin, G.P., Electrochem. Commun., 2004, vol. 6, p. 435.

    Article  CAS  Google Scholar 

  29. Sepa, D.B., Vojnovic, V., and Damjanovic, A., Electrochim. Acta, 1981, vol. 26, p. 781.

    Article  CAS  Google Scholar 

  30. Parthasarathy, A., Matrin, C.R., and Srinivasan, S., J. Electrochem. Soc., 1991, vol. 138, p. 916.

    Article  CAS  Google Scholar 

  31. Antoine, O. and Durand, R., J. Appl. Electrochem., 2000, vol. 30, p. 839.

    Article  CAS  Google Scholar 

  32. Antoine, O., Bultel, Y., and Durand, R., J. Electroanal. Chem., 2001, vol. 499, p. 85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov and V.I. Rostokin, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 7, pp. 827–233.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Active layer of the oxygen cathode in a fuel cell with Nafion and platinum: The role played by the diffusion and ohmic restrictions and the selection of the working thickness of the active layer. Russ J Electrochem 43, 787–794 (2007). https://doi.org/10.1134/S1023193507070087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507070087

Key words

Navigation