Skip to main content
Log in

Acid-base chemistry of montmorillonitic and beidellitic-montmorillonitic smectite

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Suspension of a Tunisian purified smectite and American montmorillonite are studied by acid-base potentiometric and mass titrations. These experimental methods are used to determine the point of zero net proton charge (PZNPC). A very good agreement is observed between the two kinds of experiments. The two Namontmorillonites, studied at different ionic strengths, present proton adsorption vs. pH curves with a common crossing point. The PZNPC of the edge sites are 8.02 for Tunisian purified smectite and 8.11 for pure American montmorillonite. By analyzing the proton adsorption or desorption (H+ vs. pH) curves, one may assume the presence of four active sites at the surface. The montmorillonite surface undergoes two successive protonations and two successive deprotonations. Below pH < PZNPC and in acidic range, the cation exchange at layer sites and protonation of edge sites (>A1OH groups) occur simultaneously. For pH > PZNPC and in alkaline pH range, deprotonation of surface hydroxyl groups exposed at the edge sites (>SiOH, and >A1OH at high pH) of montmorillonite platelets causes an overall negative charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wanner, H., Albinson, Y., Karnland, O., Wicland, E., Wcrsin, P., and Chariot, L., Radiochim. Acta, 1994, vol. 157, p. 66.

    Google Scholar 

  2. Frenkel, M., Clays Clay Miner., 1974, vol. 22, p. 435.

    Article  CAS  Google Scholar 

  3. Svcrjcnsky, D., Geochim. Cosmochim. Acta, 2005, vol. 69, p. 225.

    Article  CAS  Google Scholar 

  4. James, R.O. and Parks, G.A., Surf. Colloid Sci., 1982, vol. 12, p. 119.

    CAS  Google Scholar 

  5. Hayes, K.F., Redden, G., Ela, W., and Leckie, J.O., J. Colloid Interface Sci., 1991, vol. 142, p. 2.

    Article  Google Scholar 

  6. Wicland, E. and Stumrn, W., Geochim. Cosmochim. Acta, 1992, vol. 56, p. 3339.

    Article  Google Scholar 

  7. Sprycha, R. and Colloid, J., Interface Sci., 1989, vol. 127, p. 1.

    Article  CAS  Google Scholar 

  8. Du, Q., Sun, Z.X., Forsling, W., and Tang, H.X., J. Colloid Interface Sci., 1997, vol. 187, p. 221.

    Article  CAS  Google Scholar 

  9. Tonibacz, E. and Szekers, M., Langmuir, 2001, vol. 17, p. 5.

    Article  CAS  Google Scholar 

  10. Sposito, G., The Surface Chemistry of Soils, Oxford: Oxford University Press, 1984.

    Google Scholar 

  11. Avena, M.J., Cabrol, R., and de Pauli, C.P., Clays Clay Miner., 1990, vol. 38, p. 356.

    Article  CAS  Google Scholar 

  12. Avena, M.J. and de Pauli, C.P., J. Colloid Interface Sci., 1998, vol. 202, p. 195.

    Article  CAS  Google Scholar 

  13. Missana, T. and Adell, A., J. Colloid Interface Sci., 2000, vol. 230, p. 150.

    Article  CAS  Google Scholar 

  14. Kraepiet, A.M.L., Keller, K., and Morel, F.M.M., J. Colloid Interface Sci., 1999, vol. 210, p. 43.

    Article  Google Scholar 

  15. Schroth, B.L. and Sposito, G., Clays Clay Miner., 1997, vol. 45, p. 85.

    Article  CAS  Google Scholar 

  16. Zhuang, J. and Gui-Rui, Y., Chemosphere, 2002, vol. 49, p. 619.

    Article  CAS  Google Scholar 

  17. Itami, K. and Fujitani, H., Colloids Surf. A, 2005, vol. 265, p. 55.

    Article  CAS  Google Scholar 

  18. Appel, C., Lena, Q.M., Rhue, R.D., and Kenncllcy, E., Geoderma, 2003, vol. 113, p. 77.

    Article  CAS  Google Scholar 

  19. Noh, J.S. and Schwarz, J.A., J. Colloid Interface Sci., 1989, vol. 130, p. 1.

    Article  Google Scholar 

  20. Tsuchida, H., Ooi, S., Nakaishi, K., and Adaclii, Y., Colloids Surf., A, 2005, vol. 265, p. 131.

    Article  CAS  Google Scholar 

  21. Blok, L. and de Bruyn, P.L., J. Colloid Interface Sci., 1970, vol. 32, p. 3.

    Google Scholar 

  22. Duc, M., Gaboriaud, F., and Thomas, F., J. Colloid Interface Sci., 2005, vol. 289, p. 148.

    Article  CAS  Google Scholar 

  23. Spreacha, R., Jablonski, J., and Matijevik, E., J. Colloid Interface Sci., 1992, vol. 149, p. 561.

    Article  Google Scholar 

  24. Chorover, J., Amustadi, M.K., and Cliadwick, O.A., Geochim. Cosmochim. Acta, 2004, vol. 68, p. 4859.

    Article  CAS  Google Scholar 

  25. De Faria, L.A. and Trassati, S., J. Colloid Interface Sci., 1994, vol. 167, p. 352.

    Article  Google Scholar 

  26. Ganor, J., Cama, J., and Metz, V., J. Colloid Interface Sci., 2003, vol. 264, p. 67.

    Article  CAS  Google Scholar 

  27. Bleam, W.F., Welhouse, G.J., and Janowiak, M.A., Clays Clay Miner., 1993, vol. 41, p. 305.

    Article  CAS  Google Scholar 

  28. Bleam, W.F., Clays Clay Miner., 1990, vol. 38, p. 527.

    Article  CAS  Google Scholar 

  29. Madrid, L. and Diaz-Barrientos, E., J. Soil Sci. Soc., 1988, vol. 39, p. 215.

    Article  CAS  Google Scholar 

  30. Hendershot, W.H. and Lavkulich, L.M., Soil Sci. Soc. Am. J., 1983, vol. 47, p. 1252.

    Article  CAS  Google Scholar 

  31. Helmy, A.K., Ferreiro, E.A., and De Bussctti, S.G., Clays Clay Miner, 1994, vol. 42, p. 444.

    Article  CAS  Google Scholar 

  32. Tombacz, E., Abraham, I., Gilde, M., and Szanclo, F., Colloids Surf., 1994, vol. 4, p. 71.

    Google Scholar 

  33. Stadler, M. and Schindler, P.W., Clays Clay Miner., 1993, vol. 41, p. 288.

    Article  CAS  Google Scholar 

  34. Sposito, G., Environ. Sci. Technol., 1998, vol. 32, p. 2815.

    Article  CAS  Google Scholar 

  35. Bourikas, K., Kordulis, C., and Leycourghiotis, A., Environ. Sci. Technol., 2005, vol. 39, p. 4100.

    Article  CAS  Google Scholar 

  36. Huertas, F.J., Chou, L., and Wollast, R., Geochim. Cosmochim. Acta, 1998, vol. 62, p. 417.

    Article  CAS  Google Scholar 

  37. Srasra, E., Ariguib, N., Bergaya, F., and van Damme, H., in Communication a la Societe Chimique de Tunisie, Quatriemejournee de Chimie, Hammamet, Nov. 21–23, 1986.

  38. Olphen, V., An Introduction to Clay Colloid Chemistry, New York: Interscience, 1963.

    Google Scholar 

  39. Bergaya, F. and Vayer, M., Appl. Clay Sci., 1997, vol. 12, p. 275.

    Article  CAS  Google Scholar 

  40. Boissay, S., Comparison des méthodes de détermination des points de charge nulle: These, effectué au Département Minéralurgic du Bureau de Recherche Géologiquc et Miniéres á Orléans, France, Mars 1984.

    Google Scholar 

  41. Fletcher, P. and Sposito, G., Clay Miner., 1989, vol. 24, p. 375.

    Article  CAS  Google Scholar 

  42. Bergaya, F., Stoiazzo, J.P., Trauth, N., and Van Damme, H., Clay Miner., 1986, vol. 21, p. 965.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kriaa.

Additional information

Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 2, pp. 175–187.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriaa, A., Hamdi, N. & Srasra, E. Acid-base chemistry of montmorillonitic and beidellitic-montmorillonitic smectite. Russ J Electrochem 43, 167–177 (2007). https://doi.org/10.1134/S102319350702005X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319350702005X

Key words

Navigation