Skip to main content
Log in

Features of the Hydrothermal Synthesis of Montmorillonite in an Acidic Medium

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The process of the hydrothermal crystallization of montmorillonite Na2x(Al2(1 – x),Mg2x)-Si4O10(OH)2 · nH2O (0 < x ≤ 1) is studied in a weakly acidic medium with pH 4–4.5 at 220°С using HF as a mineralizer. The results of the study showed that montmorillonite samples in the acidic medium can be obtained both with the use of the HF mineralizer and without it. Under any conditions of carrying out the synthesis, there is an insignificant amount of corundum in the final product. It is established that a weakly acidic medium favors the formation of a dioctahedral structure of smectites with insignificant isomorphic substitutions (0.5 ≤ x ≤ 1). At a higher aluminum content, the acidic medium does not contribute to the formation of two-dimensional silicon-oxygen layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dong, Y. and Feng, S.-S., Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs, Biomaterials, 2005, vol. 26, no. 30, pp. 6068–6076.

    Article  Google Scholar 

  2. Joshi, G.V., Patel, H.A., Kevadiya, B.D., and Bajaj, H.C., Montmorillonite intercalated with vitamin B1 as drug carrier, Appl. Clay Sci., 2009, vol. 45, no. 4, pp. 248–253.

    Article  Google Scholar 

  3. Kollar, T., Palinko, I., Konya, Z., and Kiricsi, I., Intercalating amino acid guests into montmorillonite host, J. Mol. Struct., 2003, vols. 651–653, pp. 335–340.

    Article  Google Scholar 

  4. Lee, Y.-H., Kuo, T.-F., Chen, B.-Y., Feng, Y.-K., Wen, Y.-R., Lin, W.-C., and Lin, F.H., Toxicity assessment of montmorillonite as a drug carrier for pharmaceutical applications: Yeast and rats model, Biomed. Eng.: Appl., Basis Commun., 2005, vol. 17, pp. 72–78.

    Google Scholar 

  5. Bukhanov, V.D., Vezentsev, A.I., Ponomareva, N.F., Kozubova, L.A., Korol’kova, S.V., Volovicheva, N.A., and Peristyi, V.A., Antibacterial properties of montmorillonite containing sorbents, Nauch. Vedom., Ser.: Estestv. Nauki, 2011, vol. 111, no. 17, pp. 57–63.

    Google Scholar 

  6. Alexandre, M. and Dubois, Ph., Polymer layered silicate nanocomposites: properties and uses of a new class of materials, Mater. Sci. Eng., 2000, vol. 28, pp. 1–63.

    Article  Google Scholar 

  7. Golubeva, O.Yu., Effect of synthesis conditions on hydrothermal crystallization, textural characteristics and morphology of aluminum-magnesium montmorillonite, Microporous Mesoporous Mater., 2016, vol. 224, pp. 271–276.

    Article  Google Scholar 

  8. Golubeva, O.Yu., Ul’yanova, N.Yu., Kostyreva, T.G., Drozdova, I.A., and Mokeev, M.V., Synthetic nanoclays with the structure of montmorillonite: preparation, structure, and physico-chemical properties, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 535–539.

    Google Scholar 

  9. Reinholdt, M., Miehe-Brendle, J., Delmotte, L., Tuolier, M.-H., Dred, R.-E., Cortes, R., and Flank, A.-M., Fluorine route synthesis of montmorillonite containing Mg or Zn and characterization by XRD, thermal analysis, MAS NMR, and EXAFS spectroscopy, Eur. J. Inorg. Chem., 2001, pp. 2831–2841.

  10. Reinholdt, M., Miehe-Brendle, J., Delmotte, L., Le Dred, R., and Tuilier, M.H., Synthesis and characterization of montmorillonite-type phyllosilicates in a fluoride medium, Clay Miner., 2005, vol. 40, pp. 177–190.

    Article  Google Scholar 

  11. Jaber, M. and Miehe-Brendle, J., Synthesis, characterization and applications of 2 : 1 phyllosilicates: contribution of fluoride to study the octahedral sheet, Microporous Mesoporous Mater., 2008, vol. 107, pp. 121–127.

    Article  Google Scholar 

  12. Iler, R.K., Colloid Chemistry of Silica and Silicates, Ithaca: Cornell Univ. Press, 1955.

    Book  Google Scholar 

  13. Iler, R.K., Chemistry of Silica. Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Chichester: Wiley, 1979.

    Google Scholar 

  14. Kukovskii, E.G., Osobennosti stroeniya i fiziko-khimicheskie svoistva glinistykh mineralov (Features of Structure and Physicochemical Properties of Clay Minerals), Kiev: Naukova Dumka, 1996.

    Google Scholar 

  15. Komarov, V.S., Adsorbtsionno-strukturnye, fiziko-khimicheskie i kataliticheskie svoistva glin Belorussii (Adsorption-Structural, Physicochemical and Catalytic Properties of Clays of Belarus), Minsk: Nauka Tekhnika, 1970.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to the employees of the analytical group of the Laboratory of Physical Chemistry of Glass, Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, T.G. Kostyreva, L.N. Kurilenko, and L.A. Doronina, for the chemical analysis of the samples.

This work was supported by the Russian Foundation for Basic Research (project no. 18-03-00156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Golubeva.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, O.Y. Features of the Hydrothermal Synthesis of Montmorillonite in an Acidic Medium. Glass Phys Chem 44, 616–619 (2018). https://doi.org/10.1134/S1087659618060081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659618060081

Keywords:

Navigation