Skip to main content
Log in

Studying the process of ionization of hydrogen in conditions of its forced delivery to a porous nickel oxide electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The hydrogen ionization process is studied experimentally on an industrial sintered nickel oxide electrode in models of sealed nickel-metal hydride batteries. It is shown that the hydrogen ionization rates that are reached during overcharge by high current densities in conditions of forced gas delivery into the electrode pores (up to 40 mA cm−2) exceed the self-discharge rate of a nickel-hydrogen battery by two orders of magnitude. Up to 70% of hydrogen delivered into the compact assembly block undergoes ionization during forced charge of models of sealed nickel-metal hydride batteries with a closed hydrogen cycle. Two independent methods (potentiostatic and manometric) are used to determine the relationship between rates of hydrogen ionization with the degree of the electrode filling with gas and perform estimation of the process intensity at a unit reaction surface. It is established that, in conditions of forced gas delivery, practically all the hydrogen oxidation current is generated at the surface of the nickel oxide electrode beneath thin films of an electrolyte solution at the rate of 4–5 mA cm−2. It is shown that the hydrogen oxidation rate on a nickel oxide electrode filled in part by gas is independent of the electrode potential, probably because of a tangible contribution made by diffusion limitations to the overall hampering of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belov, O.I., Krupin, V.P., and Tyurin, I.A., Sb. Tr. Khim. Ist. Toka, 2004, p. 190.

  2. Shokhor, A.B. and Gromova, N.G., Sb. Tr. Khim. Ist. Toka, 2004, p. 97.

  3. Borisov, B.A., Voshchikova, T.D., Ten’kovtsev, V.V., and Gililo, G.S., Sb. Tr. Khim. Ist. Toka, 2004, p. 109.

  4. Do, Y.J., Back, H.L., and Sun, W.K., J. Power Sources, 2002, vol. 109, p. 1.

    Article  Google Scholar 

  5. Ikeya, T., Sawada, N., Murakami, J.I., Kobayashi, K., Hattori, M., Murotani, N., Ujiie, S., Kajiyama, K., Nasu, H., Narisoko, H., Tomaki, Y., Adachi, K., Mita, Y., and Ishihara, K., J. Power Sources, 2002, vol. 105, p. 6.

    Article  CAS  Google Scholar 

  6. Yang, X.G. and Liaw, B.Y., J. Power Sources, 2001, vol. 101, p. 158.

    Article  CAS  Google Scholar 

  7. Zhu, X., Yang, H., and Ai, X., Electrochim. Acta, 2003, vol. 48, p. 4033.

    Article  CAS  Google Scholar 

  8. Kim, D.-M., Lee, H., Cho, K., and Lee, J.-Y., J. Alloys Compd., 1999, vol. 282, p. 261.

    Article  CAS  Google Scholar 

  9. Vassal, N., Salmon, E., and Fauvarque, J.F., J. Electrochem. Soc., 1999, vol. 146, p. 20.

    Article  CAS  Google Scholar 

  10. Yang, X.G. and Liaw, B.Y., J. Electrochem. Soc., 2001, vol. 148, p. A1023.

    Article  CAS  Google Scholar 

  11. Yan, D.Y., Cheng, Q., and Cui, T., J. Alloys Compd., 1999, vol. 293–295, p. 809.

    Article  Google Scholar 

  12. Mao, L., Shan, Zh., Yin, Sh., Liu, B., and Wu, F., J. Alloys Compd., 1999, vol. 293–295, p. 825.

    Article  Google Scholar 

  13. Lee, S.M., Park, J.Q., Han, S.Ch., Lee, P.S., and Lee, J.Y., J. Electrochem. Soc., 2002, vol. 149, p. A1278.

    Article  CAS  Google Scholar 

  14. Ikoma, M., Yuasa, Sh.I., Yuasa, K., Kaida, S., Matsumoto, I., and Iwakura, Ch., J. Alloys Compd., 1998, vol. 267, p. 252.

    Article  CAS  Google Scholar 

  15. Shokhor, A.B., Gromova, N.G., and Belyaevskaya, N.A., Sb. Tr. Khim. Ist. Toka, 2004, p. 104.

  16. Knosp, B., Vallet, L., and Blanchard, Ph., J. Alloys Compd., 1999, vol. 293–295, p. 770.

    Article  Google Scholar 

  17. Khomskaya, E.A. and Gorbacheva, N.F., Elektrokhimiya, 1985, vol. 21, p. 122.

    CAS  Google Scholar 

  18. Rudik, I.V., Nikolaev, A.V., and Avrutskaya, I.A., Elektrokhimiya, 1987, vol. 23, p. 1235.

    CAS  Google Scholar 

  19. Petrii, O.A., Smirnova, N.V., and Aminov, A.Yu., Elektrokhimiya, 1998, vol. 34, p. 1124.

    Google Scholar 

  20. Rethinam, A.J. and Kennedy, C.J., J. Appl. Electrochem., 2004, vol. 34, p. 371.

    Article  CAS  Google Scholar 

  21. Tsenter, B.I. and Kloss, A.I., Elektrokhimiya, 1976, vol. 12, p. 1187.

    CAS  Google Scholar 

  22. Shokhor, A.B., Tsenter, B.I., Kloss, A.I., and Sergeev, V.M., Sb. Tr. Khim. Ist. Toka, 1974, issue 9, p. 107.

  23. Khomskaya, E.A., Burdanova, N.F., and Gorbacheva, N.F., Upravlenie gazozhidkostnym potokom pri zaryade akkumulyatorov (Governing Gas and Liquid Flows when Charging Batteries), Saratov: Saratov. Univ., 1998.

    Google Scholar 

  24. Khomskaya, E.A., Kolosov, A.S., Terent’ev, N.K., and Burdanova, N.F., Elektrokhimiya, 1976, vol. 12, p. 1241.

    CAS  Google Scholar 

  25. Mokhnatkin, V.M., Khomskaya, E.A., Kudryashova, G.M., and Chirkov, Yu.G., Elektrokhimiya, 1983, vol. 19, p. 200.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kazarinov.

Additional information

Original Russian Text © A.V. Semykin, I.A. Kazarinov, E.A. Khomskaya, 2006, published in Elektrokhimiya, 2006, Vol. 42, No. 6, pp. 719–724.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semykin, A.V., Kazarinov, I.A. & Khomskaya, E.A. Studying the process of ionization of hydrogen in conditions of its forced delivery to a porous nickel oxide electrode. Russ J Electrochem 42, 643–648 (2006). https://doi.org/10.1134/S1023193506060085

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193506060085

Key words

Navigation