Skip to main content
Log in

The Role of Transposable Elements in Long-Term Memory Formation

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A number of experimental studies are described that challenge the significance of synaptic plasticity and prove the role of transposable elements in memory consolidation. This is due to the cis-regulatory influence of activated transposable elements on gene expression, as well as insertions into new genomic loci near the genes involved in brain functioning. RNAs and proteins of endogenous retroviruses are transported to dendritic synapses and transmit information to change gene expression in neighboring cells through the formation of virus-like particles in vesicles. Because of this, the relationship between synaptic plasticity and nuclear coding is ensured, since transposable elements are also drivers of epigenetic regulation owing to the relationship to the noncoding RNAs derived from them. Our analysis of the scientific literature allowed us to identify the role of 17 microRNAs derived from transposable elements in normal memory formation. In neurodegenerative diseases with memory impairment, we identified impaired expression of 44 microRNAs derived from transposable elements. This demonstrates the potential for targeting pathological transposon activation in neurodegenerative diseases for memory restoration using microRNAs as tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Ryan, T.J., Roy, D.S., Pignatelli, M., et al., Engram cells retain memory under retrograde amnesia, Science, 2015, vol. 348, pp. 1007—1013. https://doi.org/10.1126/science.aaa5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Takeuchi, T., Duszkiewicz, A.J., and Morris, R.G., The synaptic plasticity and memory hypothesis: encoding, storage and persistence, Philos. Trans. R. Soc., B, 2013, vol. 369. https://doi.org/10.1098/rstb.2013.0288

  3. Fila, M., Diaz, L., Szczepanska, J., et al., mRNA trafficking in the nervous system: a key mechanism of the involvement of activity-regulated cytoskeleton-associated protein (Arc) in synaptic plasticity, Neural Plast., 2021, vol. 2021. https://doi.org/10.1155/2021/3468795

  4. Maag, J.L.V., Panja, D., Sporild, I., et al., Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity, Front. Neurosci., 2015, vol. 9. https://doi.org/10.3389/fnins.2015.00351

  5. Hegde, A.N. and Smith, S.G., Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory, Learn. Mem., 2019, vol. 26, pp. 307—317. https://doi.org/10.1101/lm.048769.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buurstede, J.C., van Weert, L.T.C.M., Coucci, P., et al., Hippocampal glucocorticoid target genes associated with enhancement of memory consolidation, Eur. J. Neurosci., 2022, vol. 55, pp. 2666—2683. https://doi.org/10.1111/ejn.15226

    Article  CAS  PubMed  Google Scholar 

  7. Tan, Y., Yu, D., Busto, G.U., et al., Wnt signaling is required for long-term memory formation, Cell Rep., 2013, vol. 4, no. 6, pp. 1082—1089. https://doi.org/10.1016/j.celrep.2013.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lukel, C., Schumann, D., Kalisch, R., et al., Dopamine related genes differentially affect declarative long-term memory in healthy humans, Front. Behav. Neurosci., 2020, vol. 14. https://doi.org/10.3389/fnbeh.2020.539725

  9. Kaltschmidt, B. and Kaltschmidt, C., NF-kappaB in long-term memory and structural plasticity in the adult mammalian brain, Front. Mol. Neurosci., 2015, vol. 8. https://doi.org/10.3389/fnmol.2015.00069

  10. Noyes, N.C., Phan, A., and Davis, R.L., Memory suppressor genes: modulating acquisition, consolidation, and forgetting, Neuron, 2021, vol. 109, pp. 3211—3227. https://doi.org/10.1016/j.neuron.2021.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leach, P.T., Poplawski, S.G., Kenney, J.W., et al., Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory, Learn. Mem., 2012, vol. 19, pp. 319—324. https://doi.org/10.1101/lm.024984.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gontier, G., Iyer, M., Shea, J.M., et al., Tet2 rescues age-related regenerative decline and enhances cognitive function in the adult mouse brain, Cell. Rep., 2018, vol. 22, pp. 1974—1981. https://doi.org/10.1016/j.celrep.2018.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chalertpet, K., Pin-On, P., Aporntewan, C., et al., Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells, Front. Genet., 2019, vol. 10. https://doi.org/10.3389/fgene.2019.00645

  14. Shomrat, T. and Levin, M., An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration, J. Exp. Biol., 2013, vol. 216, pp. 3799—3810.

    PubMed  Google Scholar 

  15. Chen, S., Cai, D., Pearce, K., et al., Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia, eLife, 2014, vol. 3. https://doi.org/10.7554/eLife.03896

  16. Levine, R.B., Changes in neuronal circuits during insect metamorphosis, J. Exp. Biol., 1984, vol. 112, pp. 27—44. https://doi.org/10.1242/jeb.112.1.27

    Article  CAS  PubMed  Google Scholar 

  17. Halder, R., Hennion, H., Vidal, R.O., et al., DNA methylation changes in plasticity genes accompany the formation and maintenance of memory, Nat. Neurosci., 2016, vol. 19, pp. 102—110. https://doi.org/10.1038/nn.4194

    Article  CAS  PubMed  Google Scholar 

  18. Miller, C.A., Gavin, C.F., White, J.A., et al., Cortical DNA methylation maintains remote memory, Nat. Neurosci., 2010, vol. 13, pp. 664—666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jarome, T.J. and Lubin, F.D., Epigenetic mechanisms of memory formation and reconsolidation, Neurobiol. Learn. Mem., 2014, vol. 115, pp. 116—127. https://doi.org/10.1016/j.nlm.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  20. Mustafin, R.N. and Khusnutdinova, E.K., The role of transposons in epigenetic regulation of ontogenesis, Russ. J. Dev. Biol., 2018, vol. 49, no. 2. https://doi.org/10.1134/S1062360418020066

  21. Ashley, J., Cody, B., Lucia, D., et al., Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons, Cell, 2018, vol. 172, pp. 262—274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pastuzyn, E.D., Day, C.E., Kearns, R.B., et al., The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer, Cell, 2018, vol. 172, pp. 275—288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akhlaghpour, H., An RNA-based theory of natural universal computation, J. Theor. Biol., 2022, vol. 537. https://doi.org/10.1016/j.jtbi.2021.110984

  24. Kour, S. and Rath, P.C., Long noncoding RNAs in aging and age-related diseases, Ageing Res. Rev., 2016, vol. 26, pp. 1—21. https://doi.org/10.1016/j.arr.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  25. Lu, X., Sachs, F., Ramsay, L., et al., The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 423—425. https://doi.org/10.1038/nsmb.2799

    Article  CAS  PubMed  Google Scholar 

  26. Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, no. 7, pp. 959—976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei, G., Qin, S., Li, W., et al., MDTE DB: a database for microRNAs derived from transposable element, IEEE/ACM Trans. Comput. Biol. Bioinform., 2016, vol. 13, pp. 1155—1160.

    Article  PubMed  Google Scholar 

  28. De Koning, A.P., Gu, W., Castoe, T.A., et al., Repetitive elements may comprise over two-thirds of the human genome, PLoS Genet., 2011, vol. 7, p. e1002384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feschotte, C., Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet., 2008, vol. 9, pp. 397—405. https://doi.org/10.1038/nrg2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mustafin, R.N., The relationship between transposons and transcription factors in the evolution of eukaryotes, J. Evol. Biochem. Physiol., 2019, vol. 55, no. 1, pp. 14—22. https://doi.org/10.1134/S0022093019010022

    Article  Google Scholar 

  31. Zhang, H., Li, J., Ren, J., et al., Single-nucleus transcriptomic landscape of primate hippocampal aging, Protein Cell, 2021, vol. 12, pp. 695—716. https://doi.org/10.1007/s13238-021-00852-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Muotri, A.R., Marchetto, M.C., Coufal, N.G., et al., L1 retrotransposition in neurons is modulated by MeCP2, Nature, 2010, vol. 468, pp. 443—446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coufal, N.G., Garcia-Perez, J.L., Peng, G.E., et al., L1 retrotransposition in human neural progenitor cells, Nature, 2009, vol. 460, pp. 1127—1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baillie, J.K., Barnett, M.W., Upton, K.R., et al., Somatic retrotransposition alters the genetic landscape of the human brain, Nature, 2011, vol. 479, pp. 534—537. https://doi.org/10.1038/nature10531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurnosov, A.A., Ustyugova, S.V., Nazarov, V.I., et al., The evidence for increased L1 activity in the site of human adult brain neurogenesis, PLoS One, 2015, vol. 10. https://doi.org/10.1371/journal.pone.0117854

  36. Upton, K., Gerhardt, D.J., Jesuadian, J.S., et al., Ubiquitous L1 mosaicism in hippocampal neurons, Cell, 2015, vol. 161, pp. 228—239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mustafin, R.N. and Khusnutdinova, E.K., The role of transposable elements in the ecological morphogenesis under influence of stress, Vavilovskii Zh. Genet. Sel., 2019, vol. 23, no. 4, pp. 380—389.

    Google Scholar 

  38. Ponomarev, I., Rau, V., Eger, E.I., et al., Amygdala transcriptome and cellular mechanisms underlying stress-enhanced fear learning in a rat model of posttraumatic stress disorder, Neuropsychopharmacology, 2010, vol. 35, pp. 1402—1411.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hunter, R.G., Murakami, G., Dewell, S., et al., Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 17657—17662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muotri, A.R., Zhao, C., Marchetto, M.C., and Gage, F.H., Environmental influence on L1 retrotransposons in the adult hippocampus, Hippocampus, 2009, vol. 19, pp. 1002—1007. https://doi.org/10.1002/hipo.20564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maze, I., Feng, J., Wilkinson, M.B., et al., Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 3035—3040. https://doi.org/10.1073/pnas.1015483108

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moszczynska, A., Flack, A., Qiu, P., et al., Neurotoxic methamphetamine doses increase LINE-1 expression in the neurogenic zones of the adult rat brain, Sci. Rep., 2015, vol. 5. https://doi.org/10.1038/srep14356

  43. Ponomarev, I., Wang, S., Zhang, L., et al., Gene coexpression 312 networks in human brain identify epigenetic modifications in alcohol dependence, J. Neurosci., 2012, vol. 32, pp. 1884—1897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaeser, G. and Chun, J., Brain cell somatic gene recombination and its phylogenetic foundations, J. Biol. Chem., 2020, vol. 295, pp. 12786—12795. https://doi.org/10.1074/jbc.REV120.009192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sankowski, R., Strohl, J., Huerta, T.S., et al., Endogenous retroviruses are associated with hippocampus-based memory impairment, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, pp. 25982—25990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suberbielle, E., Sanchez, P.E., Kravitz, A.V., et al., Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β, Nat. Neurosci., 2013, vol. 16, pp. 613—621. https://doi.org/10.1038/nn.3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yenerall, P. and Zhou, L., Identifying the mechanisms of intron gain: progress and trends, Biol. Direct., 2012, vol. 7, p. 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bachiller, S., del-Pozo-Martín, Y., and Carrion, A.M., L1 retrotransposition alters the hippocampal genomic landscape enabling memory formation, Brain Behav. Immun., 2017, vol. 64, pp. 65—70.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, W.J., Huang, Y.Q., Fu, A., et al., The retrotransposition of L1 is involved in the reconsolidation of contextual fear memory in mice, CNS Neurol. Disord. Drug Targets, 2021, vol. 20, pp. 273—284. https://doi.org/10.2174/1871527319666200812225509

    Article  CAS  PubMed  Google Scholar 

  50. Valles-Saiz, L., Avila, J., and Hernandez, F., Lamivudine (3TC), a nucleoside reverse transcriptase inhibitor, prevents the neuropathological alterations present in mutant tau transgenic mice, Int. J. Mol. Sci., 2023, vol. 24. https://doi.org/10.3390/ijms241311144

  51. Sun, W., Samimi, H., Gamez, M., et al., Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative taupathies, Nat. Neurosci., 2018, vol. 21, pp. 1038—1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ramirez, P., Zuniga, G., Sun, W., et al., Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system, Prog. Neurobiol., 2022, vol. 208. https://doi.org/10.1016/j.pneurobio.2021.102181

  53. Guo, C., Jeong, H.H., Hsieh, Y.C., et al., Tau activates transposable elements in Alzheimer’s disease, Cell Rep., 2018, vol. 23, pp. 2874—2880. https://doi.org/10.1016/j.celrep.2018.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grundman, J., Spencer, B., Sarsoza, F., and Rissman, R.A., Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression, PLoS One, 2021, vol. 16. https://doi.org/10.1371/journal.pone.0251611

  55. Perrat, P.N., DasGupta, S., Wang, J., et al., Transposon-driven genomic heterogeneity in the Drosophila brain, Science, 2013, vol. 340, pp. 91—95.

    Article  CAS  PubMed  Google Scholar 

  56. Lapp, H.E. and Hunter, R.G., The dynamic genome: transposons and environmental adaptation in the nervous system, Epigenomics, 2016, vol. 8, pp. 237—249.

    Article  CAS  PubMed  Google Scholar 

  57. Singer, T., McConnell, M.J., Marchetto, M.C.N., et al., LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes, Trends Neurosci., 2010, vol. 33, pp. 345—354. https://doi.org/10.1016/j.tins.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Linker, S.B., Randolph-Moore, L., Kottilil, K., et al., Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus, Genome Res., 2020, vol. 30, pp. 1643—1654. https://doi.org/10.1101/gr.262196.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang, W., Li, S., Hu, Y.M., et al., Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia, Schizophr. Bull., 2011, vol. 37, pp. 988—1000.

    Article  PubMed  Google Scholar 

  60. Leal, G., Comprido, D., and Duarte, C.B., BDNF-induced local protein synthesis and synaptic plasticity, Neuropharmacology, 2014, vol. 76, pp. 639—656.

    Article  CAS  PubMed  Google Scholar 

  61. Li, W., Prazak, L., Chatterjee, N., et al., Activation of transposable elements during aging and neuronal decline in Drosophila, Nat. Neurosci., 2013, vol. 16, pp. 529—531. https://doi.org/10.1038/nn.3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mustafin, R.N. and Khusnutdinova, E., Perspective for studying the relationship of miRNAs with transposable elements, Curr. Iss. Mol. Biol., 2023, vol. 45, pp. 3122—3145.

    Article  CAS  Google Scholar 

  63. Campillos, M., Doerks, T., Shah, P.K., and Bork, P., Computational characterization of multiple Gag-like human proteins, Trends Genet., 2006, vol. 22, pp. 585—589.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, W., Chuang, Y.A., Na, Y., et al., Arc oligomerization is regulated by CaMKII phosphorylation of the GAG domain: an essential mechanism for plasticity and memory formation, Mol. Cell, 2019, vol. 75, pp. 13—25. https://doi.org/10.1016/j.molcel.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaneko-Ishino, T. and Ishino, F., Evolution of brain functions in mammals and LTR retrotransposon-derived genes, Uirusu, 2016, vol. 66, pp. 11—20. https://doi.org/10.2222/jsv.66.11

    Article  PubMed  Google Scholar 

  66. Irie, M., Yoshikawa, M., Ono, R., et al., Cognitive function related to the Sirh11/Zcchc16 gene acquired from an LTR retrotransposon in Eutherians, PLoS Genet., 2015, vol. 11. https://doi.org/10.1371/journal.pgen.1005521

  67. Pandya, N.J., Wang, C., Costa, V., et al., Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology, Cell. Rep. Med., 2021, vol. 2. https://doi.org/10.1016/j.xcrm.2021.100360

  68. Volff, J.N., Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes, Bioessays, 2006, vol. 28, pp. 913—922.

    Article  CAS  PubMed  Google Scholar 

  69. Alzohairy, A.M., Gyulai, G., Jansen, R.K., and Bahieldin, A., Transposable elements domesticated and neofunctionalized by eukaryotic genomes, Plasmid, 2013, vol. 69, pp. 1—15.

    Article  CAS  PubMed  Google Scholar 

  70. Steplewski, A., Krynska, B., Tretiakova, A., et al., MyEF-3, a developmentally controlled brain-derived nuclear protein which specifically interacts with myelin basic protein proximal regulatory sequences, Biochem. Biophys. Res. Commun., 1998, vol. 243, pp. 295—301. https://doi.org/10.1006/bbrc.1997.7821

    Article  CAS  PubMed  Google Scholar 

  71. Chou, M.Y., Hu, M.C., Chen, P.Y., et al., RTL1/PEG11 imprinted in human and mouse brain mediates anxiety-like and social behaviors and regulates neuronal excitability in the locus coeruleus, Hum. Mol. Genet., 2022, vol. 31, pp. 3161—3180. https://doi.org/10.1093/hmg/ddac110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dlakic, M. and Mushegian, A., Prp8, the pivotal protein of the spliseosomal catalytic center, evolved from a retroelement—encoded reverse transcriptase, RNA, 2011, vol. 17, pp. 799—808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cobeta, I.M., Stadler, C.B., Li, J., et al., Specification of Drosophila neuropeptidergic neurons by the splicing component brr2, PLoS Genet., 2018, vol. 14. https://doi.org/10.1371/journal.pgen.1007496

  74. Kopera, H.C., Moldovan, J.B., Morrish, T.A., et al., Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 20345—20350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, Q.G., Liu, M.Y., Lee, H.W., et al., Hippocampal TERT regulates spatial memory formation through modulation of neural development, Stem Cell Rep., 2017, vol. 9, pp. 543—556. https://doi.org/10.1016/j.stemcr.2017.06.014

    Article  CAS  Google Scholar 

  76. Honson, D.D. and Macfarlan, T.S., A lncRNA-like role for LINE1s in development, Dev. Cell, 2018, vol. 46, pp. 132—134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, W. and Qin, C., General hallmarks of microRNAs in brain evolution and development, RNA Biol., 2015, vol. 12, pp. 701—708. https://doi.org/10.1080/15476286.2015.1048954

    Article  PubMed  PubMed Central  Google Scholar 

  78. Grinkevich, L.N., The role of microRNAs in learning and long-term memory, Vavilovskii Zh. Genet. Sel., 2020, vol. 24, no. 8, pp. 885—896. https://doi.org/10.18699/VJ20.687

    Article  CAS  Google Scholar 

  79. Zhang, H., Yu, G., Li, J., et al., Overexpressing lnc240 rescues learning and memory dysfunction in hepatic encephalopathy through miR-1264-5p/MEF2C axis, Mol. Neurobiol., 2023, vol. 60, pp. 2277—2294. https://doi.org/10.1007/s12035-023-03205-1

    Article  CAS  PubMed  Google Scholar 

  80. Xu, X.F., Wang, Y.C., Zong, L., and Wang, X.L., miR-151-5p modulates APH1a expression to participate in contextual fear memory formation, RNA Biol., 2019, vol. 16, pp. 282—294. https://doi.org/10.1080/15476286.2019.1572435

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ryan, B., Logan, B.J., Abraham, W.C., and Williams, J.M., MicroRNAs, miR-23a-3p and miR-151-3p, are regulated in dentate gyrus neuropil following induction of long-term potentiation in vivo, PLoS One, 2017, vol. 12. https://doi.org/10.1371/journal.pone.0170407

  82. Tang, C.Z., Yang, J.T., Liu, Q.H., et al., Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway, FASEB J., 2019, vol. 33, pp. 606—618. https://doi.org/10.1096/fj.201800210RR

    Article  CAS  PubMed  Google Scholar 

  83. Mainigi, M., Rosenzweig, J.M., Lei, J., et al., Peri-implantation hormonal milieu: elucidating mechanisms of adverse neurodevelopmental outcomes, Reprod. Sci., 2016, vol. 23, рр. 785–794. https://doi.org/10.1177/1933719115618280

  84. Li, L., Miao, M., Chen, J., et al., Role of Ten eleven translocation-2 (Tet2) in modulating neuronal morphology and cognition in a mouse model of Alzheimer’s disease, J. Neurochem., 2021, vol. 157, pp. 993—1012. https://doi.org/10.1111/jnc.15234

    Article  CAS  PubMed  Google Scholar 

  85. Bersten, D.C., Wright, J.A., McCarthy, P.J., and Whitelaw, M.L., Regulation of the neuronal transcription factor NPAS4 by REST and microRNAs, Biochem. Biophys. Acta, 2014, vol. 1839, pp. 13—24.

    CAS  PubMed  Google Scholar 

  86. Parsons, M.J., Grimm, C., Paya-Cano, J.L., et al., Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains, BMC Genomics, 2012, vol. 13. https://doi.org/10.1186/1471-2164-13-476

  87. Shan, L., Ma, D., Zhang, C., et al., miRNAs may regulate GABAergic transmission associated genes in aged rats with anesthetics-induced recognition and working memory dysfunction, Brain Res., 2017, vol. 1670, pp. 191—200. https://doi.org/10.1016/j.brainres.2017.06.027

    Article  CAS  PubMed  Google Scholar 

  88. Xu, L., Xu, Q., Xu, F., et al., MicroRNA-325-3p prevents sevoflurane-induced learning and memory impairment by inhibiting Nupr1 and C/EBPβ/IGFBP5 signaling in rats, Aging (Albany NY), 2020, vol. 12, pp. 5209—5220. https://doi.org/10.18632/aging.102942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wibrand, K., Pai, B., Siripornmongcolchai, T., et al., MicroRNA regulation of the synaptic plasticity-related gene Arc, PLoS One, 2012, vol. 7. https://doi.org/10.1371/journal.pone.0041688

  90. Cohen, J.E., Lee, P.R., and Fields, R.D., Systematic identification of 3'-UTR regulatory elements in activity-dependent mRNA stability in hippocampal neurons, Philos. Trans. R. Soc., B, 2014, vol. 369. p. 20130509.

  91. He, B., Chen, W., Zeng, J., et al., MicroRNA-326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimer’s disease, J. Cell. Physiol., 2020, vol. 235, pp. 480—493. https://doi.org/10.1002/jcp.28988

    Article  CAS  PubMed  Google Scholar 

  92. Capitano, F., Camon, J., Licursi, V., et al., MicroRNA-335-5p modulates spatial memory and hippocampal synaptic plasticity, Neurobiol. Learn. Mem., 2017, vol. 139, pp. 63—68.

    Article  CAS  PubMed  Google Scholar 

  93. Gu, Q.H., Yu, D., Hu, Z., et al., MiR-26a and miR-384-35p are required for LTP maintenance and spine enlargement, Nat. Commun., 2015, vol. 6, p. 6789.

    Article  CAS  PubMed  Google Scholar 

  94. Nair, P.S., Raijas, P., Ahvenainen, M., et al., Misic-listening regulates human microRNA expression, Epigenetics, 2021, vol. 16, pp. 554—566.

    Article  PubMed  Google Scholar 

  95. Eysert, F., Coulon, A., Boscher, E., et al., Alzheimer’s genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner, Mol. Psychiatry, 2021, vol. 26, pp. 5592—5607. https://doi.org/10.1038/s41380-020-00926-w

    Article  CAS  PubMed  Google Scholar 

  96. Stevanato, L., Thanabalasundaram, L., Vysokov, N., and Sinden, J.D., Investigation of content, stoichiometry and transfer of miRNA from human neural stem cell line derived exosomes, PLoS One, 2016, vol. 11. https://doi.org/10.1371/journal.pone.0146353

  97. Men, Y., Yelick, J., Jin, S., et al., Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS, Nat. Commun., 2019, vol. 10, p. 4136. https://doi.org/10.1038/s41467-019-11534-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cui, G.H., Guo, H.D., Li, H., et al., RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease, Immun. Ageing, 2019, vol. 16, p. 10. https://doi.org/10.1186/s12979-019-0150-2

    Article  PubMed  PubMed Central  Google Scholar 

  99. Puig-Parnau, I., Garcia-Brito, S., Faghihi, N., et al., Intracranial self-stimulation modulates levels of SIRT1 protein and neural plasticity-related microRNAs, Mol. Neurobiol., 2020, vol. 57, pp. 2551—2562. https://doi.org/10.1007/s12035-020-01901-w

    Article  CAS  PubMed  Google Scholar 

  100. Zhao, J., Zhang, W., Wang, S., et al., Sevoflurane-induced POCD-associated exosomes delivered miR-584-5p regulates the growth of human microglia HMC3 cells through targeting BDNF, Aging (Albany NY), 2022, vol. 14, pp. 9890—9907. https://doi.org/10.18632/aging.204398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sfera, A., Cummings, M., and Osorio, C., Dehydration and cognition in geriatrics: a hydromolecular hypothesis, Front. Mol. Biosci., 2016, vol. 3, p. 18.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Lugli G., Cohen A.M., Bennett, D.A., et al., Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers, PLoS One, 2015, vol. 10. https://doi.org/10.1371/journal.pone.0139233

  103. Sierksma, A., Lu, A., Salta, E., et al., Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology, Mol. Neurodegener., 2018, vol. 13, p. 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hulst, H.E., Schoonheim, M.M., Van Geest, Q., et al., Memory impairment in multiple sclerosis: relevance of hippocampal activation and hippocampal connectivity, Mult. Scler., 2015, vol. 21, pp. 1705—1712. https://doi.org/10.1177/1352458514567727

    Article  CAS  PubMed  Google Scholar 

  105. Bezdicek, O., Ballarini, T., Buschke, H., et al., Memory impairment in Parkinson’s disease: the retrieval versus associative deficit hypothesis revisited and reconciled, Neuropsychology, 2019, vol. 33, pp. 391—405. https://doi.org/10.1037/neu0000503

    Article  PubMed  Google Scholar 

  106. Henriques, A.D., Machado-Silva, W., Leite, R.E.P., et al., Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease, Mech. Ageing Dev., 2020, vol. 191. https://doi.org/10.1016/j.mad.2020.111352

  107. Guo, R., Fan, G., Zhang, J., et al., A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease, J. Alzheimer’s Dis., 2017, vol. 60, pp. 1365—1377. https://doi.org/10.3233/JAD-170343

    Article  CAS  Google Scholar 

  108. Satoh, J., Kino, Y., and Niida, S., MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data, Biomarker Insight, 2015, vol. 10, pp. 21—31.

    Article  Google Scholar 

  109. Liu, X.H., Ning, F.B., Zhao, D.P., et al., Role of miR-211 in a PC12 cell model of Alzheimer’s disease via regulation of neurogenin 2, Exp. Physiol., 2021, vol. 106, pp. 1061—1071. https://doi.org/10.1113/EP088953

    Article  CAS  PubMed  Google Scholar 

  110. Hong, H., Li, Y., and Su, B., Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse, J. Alzheimer’s Dis., 2017, vol. 59, pp. 1449—1458.

    Article  CAS  Google Scholar 

  111. Zhao, X., Wang, S., and Sun, W., Expression of miR-28-3p in patients with Alzheimer’s disease before and after treatment and its clinical value, Exp. Ther. Med., 2020, vol. 20, pp. 2218—2226.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Boese, A.S., Saba, R., Campbell, K., et al., MicroRNA abundance is altered in synaptoneurosomes during prion disease, Mol. Cell. Neurosci., 2016, vol. 71, pp. 13—24.

    Article  CAS  PubMed  Google Scholar 

  113. Cai, Y., Sun, Z., Jia, H., et al., Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p, Front. Mol. Neurosci., 2017, vol. 10. https://doi.org/10.3389/fnmol.2017.00027

  114. Bottero, V. and Potashkin, J.A., Meta-analysis of gene expression changes in the blood of patients with mild cognitive impairment and Alzheimer’s disease dementia, Int. J. Mol. Sci., 2019, vol. 20. https://doi.org/10.3390/ijms20215403

  115. Lu, L., Dai, W., Zhu, X., and Ma, T., Analysis of serum miRNAs in Alzheimer’s disease, Am. J. Alzheimer‘s Dis. Other Dementia, 2021, vol. 36. https://doi.org/10.1177/15333175211021712

  116. Dong, Z., Gu, H., Guo, Q., et al., Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzheimer’s disease, Mol. Neurobiol., 2021, vol. 58, pp. 3084—3094.

    Article  CAS  PubMed  Google Scholar 

  117. Samadian, M., Gholipour, M., Hajiesmaeili, M., et al., The eminent role of microRNAs in the pathogenesis of Alzheimer’s disease, Front. Aging Neurosci., 2021, vol. 13. https://doi.org/10.3389/fnagi.2021.641080

  118. Cosin-Tomas, M., Antonell, A., Llado, A., et al., Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer’s disease: potential and limitations, Mol. Neurobiol., 2017, vol. 54, pp. 5550—5562. https://doi.org/10.1007/s12035-016-0088-8

    Article  CAS  PubMed  Google Scholar 

  119. Yaqub, A., Mens, M.M.J., Klap, J.M., et al., Genome-wide profiling of circulatory microRNAs associated with cognition and dementia, Alzheimer’s Dementia, 2023, vol. 19, pp. 1194—1203. https://doi.org/10.1002/alz.12752

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, C., Lu, J., Liu, B., et al., Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimer’s disease, Aging, 2016, vol. 8, pp. 272—290. https://doi.org/10.18632/aging.100887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Majumder, P., Chanda, K., Das, D., et al., A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer’s disease and type 2 diabetes, Biochem. J., 2021, vol. 478, p. 32. https://doi.org/10.1042/BCJ20210175

    Article  Google Scholar 

  122. Qin, Z., Han, X., Ran, J., et al., Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimer’s disease, Neuroimmunomodulation, 2022, vol. 29, pp. 36–43. https://doi.org/10.1159/000516928

    Article  CAS  PubMed  Google Scholar 

  123. Dong, H., Li, J., Huang, L., et al., Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease, Dis. Markers, 2015, vol. 2015, p. 625659.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Barros-Viegas, A.T., Carmona, V., Ferreiro, E., et al., MiRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease, Mol. Ther. Nucleic Acids, 2020, vol. 19, pp. 1219—1236. https://doi.org/10.1016/j.omtn.2020.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun, C., Liu, J., Duan, F., et al., The role of the microRNA regulatory network in Alzheimer’s disease: a bioinformatics analysis, Arch. Med. Sci., 2021, vol. 18, pp. 206—222.

    PubMed  PubMed Central  Google Scholar 

  126. Barak, B., Shvarts-Serebro, I., Modai, S., et al., Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse models, Transl. Psychiatry, 2013, vol. 3, p. e304. https://doi.org/10.1038/tp.2013.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tan, X., Luo, Y., Pi, D., et al., MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in Alzheimer’s disease, Curr. Neurovasc. Res., 2020, vol. 17, pp. 86—92. https://doi.org/10.2174/1567202617666200117103931

    Article  CAS  PubMed  Google Scholar 

  128. Dakterzada, F., Benitez, I.D., Targa, A., et al., Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimer’s disease, Front. Aging Neurosci., 2021, vol. 13. https://doi.org/10.3389/fnagi.2021.705989

  129. Hajjri, S.N., Sadigh-Eteghad, S., Mehrpour, M., et al., Beta-amyloid-dependent miRNAs as circulating biomarkers in Alzheimer’s disease: a preliminary report, J. Mol. Neurosci., 2020, vol. 70, pp. 871—877. https://doi.org/10.1007/s12031-020-01511-0

    Article  CAS  PubMed  Google Scholar 

  130. Hu, L., Zhang, R., Yuan, Q., et al., The emerging role of microRNA-4487/6845-3p in Alzheimer’s disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell, BMC Syst. Biol., 2018, vol. 12, suppl. 7, p. 119. https://doi.org/10.1186/s12918-018-0633-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, T., Zhao, W., Liu, Y., et al., MicroRNA-511-3p regulates Aβ1-40 induced decreased cell viability and serves as a candidate biomarker in Alzheimer’s disease, Exp. Gerontol., 2023, vol. 178. https://doi.org/10.1016/j.exger.2023.112195

  132. Liu, Q.Y., Chang, M.N.V., Lei, J.X., et al., Identification of microRNAs involved in Alzheimer’s progression using a rabbit model of the disease, Am. J. Neurodegener. Dis., 2014, vol. 3, pp. 33—44.

    PubMed  PubMed Central  Google Scholar 

  133. Xu, X., Gu, D., Xu, B., et al., Circular RNA circ_0005835 promotes neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-ep in Alzheimer’s disease, Environ. Sci. Pollut. Res. Int., 2022, vol. 29, pp. 35934—35943.

    Article  CAS  PubMed  Google Scholar 

  134. Lau, P., Bossers, K., Janky, R., et al., Alteration of the microRNA network during the progression of Alzheimer’s disease, EMBO Mol. Med., 2013, vol. 5, pp. 1613—1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Baek, S.J., Ban, H.J., Park, S.M., et al., Circulating microRNAs as potential diagnostic biomarkers for poor sleep quality, Nat. Sci. Sleep, 2021, vol. 13, pp. 1001—1012. https://doi.org/10.2147/NSS.S311541

    Article  PubMed  PubMed Central  Google Scholar 

  136. Schonrock, N., Ke, Y.D., Humphreys, D., et al., Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-β, PLoS One, 2010, vol. 5, p. e11070. https://doi.org/10.1371/journal.pone.0011070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rahman, M.R., Islam, T., Zaman, T., et al., Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective, Genomics, 2020, vol. 112, pp. 1290—1299.

    Article  CAS  PubMed  Google Scholar 

  138. Di Palo, A.D., Siniscalchi, C., Crescente, G., et al., Effect of cannabidiolic acid, N-trans-caffeoyltyramine and cannabisin B from hemp seeds on microRNA expression in human neural cells, Curr. Issues Mol. Biol., 2022, vol. 44, pp. 5106—5116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tan, L., Yu, J.T., Tan, M.S., et al., Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease, J. Alzheimer’s Dis., 2014, vol. 40, pp. 1017—1027. https://doi.org/10.3233/JAD-132144

    Article  CAS  Google Scholar 

  140. Zhang, Y., Xia, Q., and Lin, J., LncRNA H19 attenuates apoptosis in MPTP-induced Parkinson’s disease through regulating miR-585-3p/PIK3R3, Neurochem. Res., 2020, vol. 45, pp. 1700—1710. https://doi.org/10.1007/s11064-020-03035-w

    Article  CAS  PubMed  Google Scholar 

  141. Soreq, L., Salomonis, N., Bronstein, M., et al., Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation induced splicing changes that classify brain region transcriptomes, Front. Mol. Neurosci., 2013, vol. 6. https://doi.org/10.3389/fnmol.2013.00010

  142. Marsh, A.G., Cottrell, M.T., and Goldman, M.F., Epigenetic DNA methylation profiling with MSRE: a quantitative NGS approach using a Parkinson’s disease test case, Front. Genet., 2016, vol. 7. https://doi.org/10.3389/fgene.2016.00191

  143. Honorato-Mauer, J., Xavier, G., Ota, V.K., et al., Alterations in microRNA of extracellular vesicles associated with major depression, attention-deficit/hyperactivity and anxiety disorders in adolescents, Transl. Psychiatry, 2023, vol. 13, p. 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Goen, K., Matby, V.E., Lea, R.A., et al., Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis, BMC Med. Genomics, 2018, vol. 11, p. 48. https://doi.org/10.1186/s12920-018-0365-7

    Article  CAS  Google Scholar 

  145. Liguori, M., Nuzziello, N., Licciulli, F., et al., Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: an integrated approach to uncover novel pathogenic mechanisms of the disease, Hum. Mol. Genet., 2018, vol. 27, pp. 66—79. https://doi.org/10.1093/hmg/ddx385

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mustafin.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafin, R.N., Khusnutdinova, E.K. The Role of Transposable Elements in Long-Term Memory Formation. Russ J Genet 60, 407–420 (2024). https://doi.org/10.1134/S1022795424040094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424040094

Keywords:

Navigation