Skip to main content

Advertisement

Log in

Plasma miR-34a-5p and miR-545-3p as Early Biomarkers of Alzheimer’s Disease: Potential and Limitations

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Plasma microRNAs (miRNAs) have been proposed as potential biomarkers in Alzheimer’s disease (AD). Here, we explored their use as early sensors of the preclinical phase of the disease, when brain pathology is being developed and no cognitive loss is detected. For this purpose, we analyzed a set of ten mature plasma miRNAs in symptomatic patients with AD from a cohort that also included healthy controls (HC) and patients with preclinical Alzheimer’s disease (PAD) (cohort 1). Plasmas from subjects with Parkinson’s disease (PD) were used to control for disease specificity. We found that miR-15b-5p, miR-34a-5p, miR-142-3p, and miR-545-3p levels significantly distinguished AD from PD and HC subjects. We next examined the expression of these four miRNAs in plasma from subjects with PAD. Among these, miR-34a-5p and miR-545-3p presented good diagnostic accuracy to distinguish both AD and PAD from HC subjects, according to the receiver operating characteristic (ROC) curve analysis. Both miRNAs also demonstrated a significant positive correlation with Aβ1–42 levels in cerebrospinal fluid (CSF). Taking into account the clinical potential of these findings, we decided to validate the diagnostic accuracy of miR-34a-5p and miR-545-3p in plasma samples from an independent cohort (cohort 2), in which we did not observe the alterations described by us and others in AD and PAD samples. Although miR-34a-5p and miR-545-3p might be promising early biomarker candidates for AD, our study highlights possible sources of variability in miRNA analysis across hospitals, which currently prevents their use as reliable clinical tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morris JC (2005) Early-stage and preclinical Alzheimer disease. Alzheimer Dis Assoc Disord 19(3):163–165

    Article  PubMed  Google Scholar 

  2. Sperling RA et al. (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292

    Article  PubMed  PubMed Central  Google Scholar 

  3. Molinuevo JL et al. (2016) Ethical challenges in preclinical Alzheimer’s disease observational studies and trials: results of the Barcelona summit. Alzheimers Dement 12(5):614–622

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dubois B et al. (2016) Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12(3):292–323

    Article  PubMed  Google Scholar 

  5. Sperling RA et al. (2014) The A4 study: stopping AD before symptoms begin? Sci Transl Med 6(228):228fs13

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cheng, L., et al. (2014) Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 20(10):1188–1196

  7. Sheinerman KS et al. (2013) Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging (Albany NY) 5(12):925–938

    Article  CAS  Google Scholar 

  8. Ray S et al. (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13(11):1359–1362

    Article  CAS  PubMed  Google Scholar 

  9. Jack CR Jr et al. (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jack CR Jr et al. (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hansson O et al. (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5(3):228–234

    Article  CAS  PubMed  Google Scholar 

  12. Villemagne VL et al. (2013) Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367

    Article  CAS  PubMed  Google Scholar 

  13. Mistur R et al. (2009) Current challenges for the early detection of Alzheimer’s disease: brain imaging and CSF studies. J Clin Neurol 5(4):153–166

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guder WG, Nayaranan S, Wisser H, Zawta B (2014) Diagnostic samples: from the patient to the laboratory: the impact of preanalytical variables on the quality of laboratory results. Wiley

  15. Banfi G, Deom A, Fräser CG, Hagemann P, Henny J, Kaliner A, Leppänen EA, Narayanan S, Neumaier M, Gomes MPA, Probst R (2009) Serum, plasma or whole blood? Which anticoagulants to use? Journal of Laboratory Medicine:297–312

  16. Lehmann S et al. (2009) Preanalytical guidelines for clinical proteomics investigation of biological fluids. Ann Biol Clin (Paris) 67(6):629–639

    CAS  Google Scholar 

  17. Pritchard CC et al. (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5(3):492–497

    Article  CAS  Google Scholar 

  18. Kim YK (2015) Extracellular microRNAs as biomarkers in human disease. Chonnam Med J 51(2):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang W, Kwon EJ, Tsai LH (2012) MicroRNAs in learning, memory, and neurological diseases. Learn Mem 19(9):359–368

    Article  CAS  PubMed  Google Scholar 

  21. Mastroeni D et al. (2011) Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32(7):1161–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van den Hove DL et al. (2014) Epigenetically regulated microRNAs in Alzheimer’s disease. Neurobiol Aging 35(4):731–745

    Article  CAS  PubMed  Google Scholar 

  23. Xu B et al. (2012) MicroRNA dysregulation in neuropsychiatric disorders and cognitive dysfunction. Neurobiol Dis 46(2):291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eacker SM, Dawson TM, Dawson VL (2009) Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 10(12):837–841

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dwivedi Y (2016) Pathogenetic and therapeutic applications of microRNAs in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 64:341–348

    Article  CAS  Google Scholar 

  26. Cao DD, Li L, Chan WY (2016) MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci 17(6)

  27. Femminella GD, Ferrara N, Rengo G (2015) The emerging role of microRNAs in Alzheimer’s disease. Front Physiol 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maes OC et al. (2009) MicroRNA: implications for Alzheimer disease and other human CNS disorders. Curr Genomics 10(3):154–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Delay C, Mandemakers W, Hebert SS (2012) MicroRNAs in Alzheimer’s disease. Neurobiol Dis 46(2):285–290

    Article  CAS  PubMed  Google Scholar 

  30. Cosin-Tomas M et al. (2014) Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Front Aging Neurosci 6:51

    PubMed  PubMed Central  Google Scholar 

  31. Noh H et al. (2014) Prediction of miRNA-mRNA associations in Alzheimer’s disease mice using network topology. BMC Genomics 15:644

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weilner S et al. (2013) Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol 48(7):626–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gibbings DJ et al. (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149

    Article  CAS  PubMed  Google Scholar 

  34. Iguchi H, Kosaka N, Ochiya T (2010) Secretory microRNAs as a versatile communication tool. Commun Integr Biol 3(5):478–481

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen X et al. (2012) Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 22(3):125–132

    Article  CAS  PubMed  Google Scholar 

  36. Dorval V, Nelson PT, Hebert SS (2013) Circulating microRNAs in Alzheimer’s disease: the search for novel biomarkers. Front Mol Neurosci 6:24

    PubMed  PubMed Central  Google Scholar 

  37. Sheinerman KS et al. (2012) Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY) 4(9):590–605

    Article  CAS  Google Scholar 

  38. Kiko T et al. (2014) MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis 39(2):253–259

    CAS  PubMed  Google Scholar 

  39. Tan L et al. (2014) Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336(1–2):52–56

    Article  CAS  PubMed  Google Scholar 

  40. Tan L et al. (2014) Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 40(4):1017–1027

    CAS  PubMed  Google Scholar 

  41. Bhatnagar S et al. (2014) Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma. Front Mol Neurosci 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Geekiyanage H et al. (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235(2):491–496

    Article  CAS  PubMed  Google Scholar 

  43. Kumar P et al. (2013) Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One 8(7):e69807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bekris LM, Leverenz JB (2015) The biomarker and therapeutic potential of miRNA in Alzheimer’s disease. Neurodegener Dis Manag 5(1):61–74

    Article  PubMed  Google Scholar 

  45. Bekris LM et al. (2013) MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 18(5):455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu YB et al. (2016) Diagnostic value of microRNA for Alzheimer’s disease: a systematic review and meta-analysis. Front Aging Neurosci 8:13

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zi Y et al. (2015) Circulating MicroRNA as potential source for neurodegenerative diseases biomarkers. Mol Neurobiol 52(3):1494–1503

    Article  CAS  PubMed  Google Scholar 

  48. Tan L, Yu JT, Hu N, Non-coding RNA (2013) In Alzheimer’s disease. Mol Neurobiol 47(1):382–393

    Article  CAS  PubMed  Google Scholar 

  49. Sorensen SS, Nygaard AB, Christensen T (2016) miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia—an exploratory study. Transl Neurodegener 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  50. Muller M et al. (2016) Validation of microRNAs in cerebrospinal fluid as biomarkers for different forms of dementia in a multicenter study. J Alzheimers Dis 52(4):1321–1333

    Article  PubMed  Google Scholar 

  51. Danborg PB et al. (2014) The potential of microRNAs as biofluid markers of neurodegenerative diseases—a systematic review. Biomarkers 19(4):259–268

    Article  CAS  PubMed  Google Scholar 

  52. Leidinger P et al. (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14(7):R78

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sheinerman KS, Umansky SR (2013) Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies. Front Cell Neurosci 7:150

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moldovan L et al. (2014) Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 18(3):371–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alcolea D et al. (2014) Relationship between beta-secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer’s disease. J Alzheimers Dis 42(1):157–167

    CAS  PubMed  Google Scholar 

  56. Alcolea D et al. (2015) Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease. Neurology 85(7):626–633

    Article  CAS  PubMed  Google Scholar 

  57. Antonell A et al. (2011) Different profiles of Alzheimer’s disease cerebrospinal fluid biomarkers in controls and subjects with subjective memory complaints. J Neural Transm (Vienna) 118(2):259–262

    Article  CAS  Google Scholar 

  58. Zivelin A et al. (1997) Improved method for genotyping apolipoprotein E polymorphisms by a PCR-based assay simultaneously utilizing two distinct restriction enzymes. Clin Chem 43(9):1657–1659

    CAS  PubMed  Google Scholar 

  59. Hughes AJ et al. (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kroh EM et al. (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50(4):298–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mitchell PS et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stephan C et al. (2003) Comparison of eight computer programs for receiver-operating characteristic analysis. Clin Chem 49(3):433–439

    Article  CAS  PubMed  Google Scholar 

  63. Fan J, Upadhye S, Worster A (2006) Understanding receiver operating characteristic (ROC) curves. CJEM 8(1):19–20

    Article  PubMed  Google Scholar 

  64. Dubois B et al. (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9(11):1118–1127

    Article  PubMed  Google Scholar 

  65. Rohn TT et al. (2008) Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J Neurosci 28(12):3051–3059

    Article  CAS  PubMed  Google Scholar 

  66. Li X et al. (2011) Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY) 3(10):985–1002

    Article  CAS  Google Scholar 

  67. Wang X et al. (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80(4–5):268–273

    Article  CAS  PubMed  Google Scholar 

  68. Ferreiro E et al. (2007) Bcl-2 overexpression protects against amyloid-beta and prion toxicity in GT1-7 neural cells. J Alzheimers Dis 12(3):223–228

    Article  CAS  PubMed  Google Scholar 

  69. Tiberio P et al. (2015) Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int 2015:731479

    Article  PubMed  PubMed Central  Google Scholar 

  70. McDonald JS et al. (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 57(6):833–840

    Article  CAS  PubMed  Google Scholar 

  71. Wang K et al. (2012) Comparing the MicroRNA spectrum between serum and plasma. PLoS One 7(7):e41561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng HH et al. (2013) Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 8(6):e64795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cogswell JP et al. (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14(1):27–41

    Article  CAS  PubMed  Google Scholar 

  74. Sarkar S et al. (2016) Expression of microRNA-34a in Alzheimer’s disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139–151

    Article  CAS  PubMed  Google Scholar 

  75. Yamakuchi M, Ferlito M, Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105(36):13421–13426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Julien C et al. (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 68(1):48–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ng F, Wijaya L, Tang BL (2015) SIRT1 in the brain-connections with aging-associated disorders and lifespan. Front Cell Neurosci 9:64

    PubMed  PubMed Central  Google Scholar 

  78. Pallas M et al. (2008) Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 154(4):1388–1397

    Article  CAS  PubMed  Google Scholar 

  79. Kaarniranta K et al. (2011) Age-related macular degeneration (AMD): Alzheimer’s disease in the eye? J Alzheimers Dis 24(4):615–631

    CAS  PubMed  Google Scholar 

  80. Hill JM, Pogue AI, Lukiw WJ (2015) Pathogenic microRNAs common to brain and retinal degeneration; recent observations in Alzheimer’s disease and age-related macular degeneration. Front Neurol 6:232

    PubMed  PubMed Central  Google Scholar 

  81. Hsu SD et al. (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42(Database issue):D78–D85

    Article  CAS  PubMed  Google Scholar 

  82. Martiskainen H et al. (2013) Targeting ApoE4/ApoE receptor LRP1 in Alzheimer’s disease. Expert Opin Ther Targets 17(7):781–794

    Article  CAS  PubMed  Google Scholar 

  83. Donahue JE et al. (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 112(4):405–415

    Article  CAS  PubMed  Google Scholar 

  84. Sze CI et al. (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56(8):933–944

    Article  CAS  PubMed  Google Scholar 

  85. Yuki D et al. (2014) DHA-PC and PSD-95 decrease after loss of synaptophysin and before neuronal loss in patients with Alzheimer’s disease. Sci Rep 4:7130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Glatt SJ et al. (2005) Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci U S A 102(43):15533–15538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ma X et al. (2014) Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci 11(8):810–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. van Harten AC et al. (2013) Cerebrospinal fluid Abeta42 is the best predictor of clinical progression in patients with subjective complaints. Alzheimers Dement 9(5):481–487

    Article  PubMed  Google Scholar 

  89. van Harten AC et al. (2015) Differential expression of microRNA in cerebrospinal fluid as a potential novel biomarker for Alzheimer’s disease. J Alzheimers Dis 47(1):243–252

    Article  PubMed  Google Scholar 

  90. Kester MI et al. (2009) CSF biomarkers in Alzheimer’s disease and controls: associations with APOE genotype are modified by age. J Alzheimers Dis 16(3):601–607

    Article  CAS  PubMed  Google Scholar 

  91. Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Moul JW et al. (2007) Age adjusted prostate specific antigen and prostate specific antigen velocity cut points in prostate cancer screening. J Urol 177(2):499–503 discussion 503–4

    Article  CAS  PubMed  Google Scholar 

  93. Hollins SL, Cairns MJ (2016) MicroRNA: small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 143:61–81

  94. Codocedo JF, Inestrosa NC (2016) Environmental control of microRNAs in the nervous system: implications in plasticity and behavior. Neurosci Biobehav Rev 60:121–138

    Article  CAS  PubMed  Google Scholar 

  95. Flowers E, Won GY, Fukuoka Y (2015) MicroRNAs associated with exercise and diet: a systematic review. Physiol Genomics 47(1):1–11

    Article  CAS  PubMed  Google Scholar 

  96. Xu T et al. (2015) Circulating microRNAs in response to exercise. Scand J Med Sci Sports 25(2):e149–e154

    Article  CAS  PubMed  Google Scholar 

  97. Zacharewicz E, Lamon S, Russell AP (2013) MicroRNAs in skeletal muscle and their regulation with exercise, ageing, and disease. Front Physiol 4:266

    Article  PubMed  PubMed Central  Google Scholar 

  98. Palmer JD et al. (2014) MicroRNA expression altered by diet: can food be medicinal? Ageing Res Rev 17:16–24

    Article  CAS  PubMed  Google Scholar 

  99. Vanderstichele H et al. (2012) Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s biomarkers standardization initiative. Alzheimers Dement 8(1):65–73

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants CSD2010-00045 and SAF2012-39852 from the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF), Instituto de Salud Carlos III (PI11/03035, PI11/02425, PI14/01561), and a grant from the Fundació la Marató de TV3 (20142610). Marta Cosín-Tomás is supported by a predoctoral fellowship from MINECO (FPU 2013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Coral Sanfeliu or Perla Kaliman.

Ethics declarations

Subjects were recruited at Hospital Clínic de Barcelona (cohort 1 n = 20–21/group; groups HC, AD, PAD, and PD) and at Hospital de Sant Pau de Barcelona (cohort 2 n = 15/group; groups HC, AD, PAD). All participants gave informed written consent.

Electronic Supplementary Material

Online resource 1

(PDF 66 kb)

Online resource 2

(PDF 88 kb)

Online resource 3

(PDF 177 kb)

Online resource 4

(PDF 64 kb)

Online resource 5

(PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosín-Tomás, M., Antonell, A., Lladó, A. et al. Plasma miR-34a-5p and miR-545-3p as Early Biomarkers of Alzheimer’s Disease: Potential and Limitations. Mol Neurobiol 54, 5550–5562 (2017). https://doi.org/10.1007/s12035-016-0088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0088-8

Keywords

Navigation