Skip to main content
Log in

Elucidating the Molecular Genetics of Genes CYP19A1, CYP17, and FSHR Variants Association in Polycystic Ovarian Syndrome

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Association of genes CYP19A1 (rs2414096), CYP17 (rs743572) and FSHR (rs2268361) variants on the susceptibility of developing PCOS was studied. This disease is most common problem faced by Pakistani females. The incidence of this disease has increased last couple of decades but no work on genes involved in PCOS has been done so far in Pakistan. Blood samples of 300 subjects including 150 PCOS cases and 150 age-matched controls were collected from different hospitals of Pakistan. DNA extraction from whole blood was done followed by DNA amplification. Data was collected on a pre-designed questionnaire for age, BMI, smoking status, and family history. Statistical analysis was done using different statistical tools. Homozygous mutant (GG) of rs2414096 SNP of CYP19A1 gene contributes significantly to the decreased risk of PCOS (OR = 0.24; 95% CI = 0.15–0.40; P = 0.0001), while heterozygous (AG) of the same SNP shows positive association with increased PCOS risk up to 2.62 folds (OR = 2.62; 95% CI = 1.60–4.30; P = 0.0001). Combined genotype model (GG+AG) of this SNP again shows significant association with decreased PCOS risk (OR = 0.44; 95% CI = 0.24–0.81; P = 0.0086). In Case of rs743572 polymorphism of CYP17 gene, homozygous mutant (CC) significantly increased the risk of PCOS by 3.2-fold (OR = 3.22; 95% CI = 1.94–4.34; p = 0.0001) while heterozygous (TC) of the same SNP significantly decreased the risk of PCOS (OR = 0.34; 95% CI = 0.20–0.58; p = 0.0001). In rs2268361 variants of FSHR gene, homozygous mutant (TT) significantly decreases the risk of PCOS and plays a protective role (OR = 0.52; 95% CI = 0.33–0.84; p = 0.0072) while heterozygous (CT) of the same SNP significantly increases the risk of PCOS up to 3 folds (OR = 3.46; 95% CI = 1.97–6.07; p = 0.0001). An increased risk of PCOS is associated with the rs2414096, rs743572 and rs2268361 genotype of genes CYP19A1, CYP17 and FSHR respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Johnson, B.S., Krishna, M.B., Padmanabhan, R.A, et al., Derailed peripheral circadian genes in polycystic ovary syndrome patients alters peripheral conversion of androgens synthesis, Hum. Reprod., 2022, vol. 37, no. 8, pp. 1835—1855. https://doi.org/10.1093/humrep/deac139

    Article  CAS  PubMed  Google Scholar 

  2. Ajmal, N., Khan, S.Z. and Shaikh, R., Polycystic ovary syndrome (PCOS) and genetic predisposition: a review article, Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, vol. X, no. 3. https://doi.org/10.1016/j.eurox.2019.100060

  3. Makhdoomi, M.J., Shah, I.A., Rashid, R., et al., Effect modification of LHCGR gene variant (rs2293275) on clinico-biochemical profile, and levels of luteinizing hormone in polycystic ovary syndrome patients, Biochem. Genet., 2023, vol. 45, no. 17, pp. 1—15. https://doi.org/10.1007/s10528-022-10327-z

    Article  CAS  Google Scholar 

  4. Lathia, T., Joshi, A., Behl, A., et al., A practitioner’s toolkit for polycystic ovary syndrome counselling, Indian J. Endocrinol. Metabol., 2022, vol. 26, no. 1, p. 17. https://doi.org/10.4103/ijem.ijem_411_21

    Article  CAS  Google Scholar 

  5. Tojieva, I., Body composition in thin women with PCOS, Sci. Innovation, 2023, vol. 2, no. D5, pp. 8—13.

    Google Scholar 

  6. Khan, M.J., Ullah, A., and Basit, S., Genetic basis of polycystic ovary syndrome (PCOS): current perspectives, Appl. Clin. Genet., 2019, pp. 249—260. https://doi.org/10.2147/TACG.S200341

  7. Hugar, A.L., Kanjikar, A.P., and Londonkar, R.L., Polycystic ovary syndrome (PCOS)—a mini review, J. Gynecol., 2018, vol. 3, no. 1, p. 000148.

    Google Scholar 

  8. El Hayek, S., Bitar, L., Hamdar, L.H., et al., Poly cystic ovarian syndrome: an updated overview, Front. Physiol., 2016, vol. 7, p. 124. https://doi.org/10.3389/fphys.2016.00124

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wolf, W.M., Wattick, R.A., Kinkade, O.N., and Olfert, M.D., Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity, Int. J. Environ. Res. Public Health, 2018, vol. 15, no. 11. https://doi.org/10.3390/ijerph15112589

  10. Jin, J.L., Sun, J., Ge, H.J., et al., Association between CYP19 gene SNP rs2414096 polymorphism and polycystic ovary syndrome in Chinese women, BMC Med. Genet., 2009, vol. 10, pp. 1—5. https://doi.org/10.1186/1471-2350-10-139

    Article  CAS  Google Scholar 

  11. Choudhary, N., Choudhary, S., Kumar, A., and Singh, V., Deciphering the multi-scale mechanisms of Tephrosia purpurea against polycystic ovarian syndrome (PCOS) and its major psychiatric comorbidities: studies from network pharmacological perspective, Gene, 2021, vol. 773. https://doi.org/10.1016/j.gene.2020.145385

  12. Rahimi, Z. and Mohammadi, E., The CYP17 MSP AI (T-34C) and CYP19A1 (Trp39Arg) variants in polycystic ovary syndrome: a case—control study, Int. J. Reprod. BioMed., 2019, vol. 17, no. 3, p. 201. https://doi.org/10.18502/ijrm.v17i3.4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Heidarzadehpilehrood, R., Pirhoushiaran, M., Abdollahzadeh, R., et al., A review on CYP11A1, CYP17A1, and CYP19A1 polymorphism studies: candidate susceptibility genes for polycystic ovary syndrome (PCOS) and infertility, Genes, 2022, vol. 13, no. 2. https://doi.org/10.3390/genes13020302

  14. Bashir, K., Sarwar, R., Fatima, S., et al., Haplotype analysis of XRCC1 gene polymorphisms and the risk of thyroid carcinoma, J. BUON, 2018, vol. 23, no. 1, pp. 234—243. https://doi.org/10.1371/journal.pone.0199007

    Article  CAS  PubMed  Google Scholar 

  15. Breyley-Smith, A., Mousa, A., Teede, H.J., et al., The effect of exercise on cardiometabolic risk factors in women with polycystic ovary syndrome: a systematic review and meta-analysis, Int. J. Environ. Res. Public Health, 2022, vol. 19, no. 3. https://doi.org/10.3390/ijerph19031386

  16. Khayati, N. and Cusmarih, C., Meta-analysis of determinants of the incidence of polycystic ovarian syndrome (PCOS) in Indonesia, Proc. Int. Conf. Nurs. Health Sci., 2023, vol. 4, no. 1, pp. 241—248. https://doi.org/10.37287/picnhs.v4i1.1801

    Article  Google Scholar 

  17. Khalid, S., Arshad, M., Raza, K., et al., Assessment of hepatoprotective, nephroprotective efficacy, and antioxidative potential of Moringa oleifera leaf powder and ethanolic extract against PCOS-induced female albino mice (Mus musculus), Food Sci. Nutr., 2023. https://doi.org/10.1002/fsn3.3646

  18. Rizvi, M., Islam, M.A., Aftab, M.T., Naqvi, A.A., et al., Knowledge, attitude, and perceptions about polycystic ovarian syndrome, and its determinants among Pakistani undergraduate students, PLoS One, 2023, vol. 18, no. 5. https://doi.org/10.1371/journal.pone.0285284

  19. Rajalakshmi, V.V. and Chinnappan, J., Analysis of cortisol mechanism to predict common genes between PCOS and its co-morbidities, Network Mod. Anal. Health Inf. Bioinf., 2023, vol. 12, no. 1, p. 36. https://doi.org/10.1007/s13721-023-00429-y

    Article  Google Scholar 

  20. Rashid, R., Shah, I.A., Makhdoomi, M.J., et al., Association of TCF7L2 gene variant (rs12255372) with polycystic ovary syndrome and its effect modification of the disease phenotype, Indian J. Clin. Biochem., 2023, pp. 1—7. https://doi.org/10.1007/s40200-022-01050-y

  21. Livadas, S., Paparodis, R., Anagnostis, P., et al., Assessment of type 2 diabetes risk in young women with polycystic ovary syndrome, Diagnostics, 2023, vol. 13, no. 12. https://doi.org/10.3390/diagnostics13122067

  22. Park, K.H., Kim, J.Y., Ahn, C.W., et al., Polycystic ovarian syndrome (PCOS) and insulin resistance, Int. J. Gynecol. Obstet., 2001, vol. 74, no. 3, pp. 261—267. https://doi.org/10.1155/2012/173281

    Article  CAS  Google Scholar 

  23. Randeva, H.S., Tan, B.K., Weickert, M.O., et al., Cardiometabolic aspects of the polycystic ovary syndrome, Endocr. Rev., 2012, vol. 33, no. 5, pp. 812—841. https://doi.org/10.1210/er.2012-1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wild, R.A., Carmina, E., Diamanti-Kandarakis, E., et al., Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society, J. Clin. Endocrinol. Metab., 2010, vol. 95, no. 5, pp. 2038—2049. https://doi.org/10.1210/jc.2009-2724

    Article  CAS  PubMed  Google Scholar 

  25. Osibogun, O., Ogunmoroti, O., Kolade, O.B., et al., A systematic review and meta-analysis of the association between polycystic ovary syndrome and coronary artery calcification, J. Women’s Health, 2022, vol. 31, no. 6, pp. 762—771. https://doi.org/10.1089/jwh.2021.0608

    Article  Google Scholar 

  26. Hart, R., PCOS and infertility, Panminerva Med., 2008, vol. 50, no. 4, pp. 305—314.

    CAS  PubMed  Google Scholar 

  27. Dumesic, D.A. and Lobo, R.A., Cancer risk and PCOS, Steroids, 2013, vol. 78, no. 8, pp. 782—785.

    Article  CAS  PubMed  Google Scholar 

  28. Himelein, M.J. and Thatcher, S.S., Polycystic ovary syndrome and mental health: a review, Obstet. Gynecol. Surv., 2006, vol. 61, no. 11, pp. 723—732. https://doi.org/10.1097/01.ogx.0000243772.33357.84

    Article  PubMed  Google Scholar 

  29. Rodrigues, P., Marques, M., Manero, J.A., et al., In vitro maturation of oocytes as a laboratory approach to polycystic ovarian syndrome (PCOS): from oocyte to embryo, WIREs Mech. Dis., 2023. https://doi.org/10.1002/wsbm.1600

  30. Gambineri, A., Tomassoni, F., Munarini, A., et al., A combination of polymorphisms in HSD11B1 associates with in vivo 11β-HSD1 activity and metabolic syndrome in women with and without polycystic ovary syndrome, Eur. J. Endocrinol., 2011, vol. 165, no. 2, pp. 283—292. https://doi.org/10.1530/EJE-11-0091

    Article  CAS  PubMed  Google Scholar 

  31. Maclaren, N.K., Gujral, S., Ten, S., and Motagheti, R., Childhood obesity and insulin resistance, Cell Biochem. Biophys., 2007, vol. 48, nos. 2—3, pp. 73—78. https://doi.org/10.1155/2010/196476

    Article  CAS  PubMed  Google Scholar 

  32. Qin, L., Xu, W., Li, X., et al., Differential expression profile of immunological cytokines in local ovary in patients with polycystic ovarian syndrome: analysis by flow cytometry, Eur. J. Obstet. Gynecol. Reprod. Biol., 2016, vol. 197, pp. 136—141. https://doi.org/10.1016/j.ejogrb.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  33. Petry, C.J., Ong, K.K., Michelmore, K.F., et al., Association of aromatase (CYP 19) gene variation with features of hyperandrogenism in two populations of young women, Hum. Reprod., 2005, vol. 20, no. 7, pp. 1837—1843. https://doi.org/10.1093/humrep/deh900

    Article  CAS  PubMed  Google Scholar 

  34. Yu, L., Liao, Y., Wu, H., et al., Effects of electroacupuncture and Chinese kidney-nourishing medicine on polycystic ovary syndrome in obese patients, J. Tradit. Chin. Med., 2013, vol. 33, no. 3, pp. 287—293. https://doi.org/10.1016/s0254-6272(13)60166-1

    Article  PubMed  Google Scholar 

  35. Alshammary, A.F., Alsobaie, S.F., Alageel, A.A., et al., Molecular role of Asn680Ser and Asp37Glu missense variants in Saudi women with female infertility and polycystic ovarian syndrome, Curr. Issues Mol. Biol., 2023, vol. 45, no. 7, pp. 5494—5514. https://doi.org/10.3390/cimb45070348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mehdizadeh, A., Kalantar, S.M., Sheikhha, M.H., et al., Association of SNP rs. 2414096 CYP19 gene with polycystic ovarian syndrome in Iranian women, Int. J. Reprod. BioMed., 2017, vol. 15, no. 8, p. 491.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pusalkar, M., Meherji, P., Gokral, J., et al., CYP11A1 and CYP17 promoter polymorphisms associate with hyperandrogenemia in polycystic ovary syndrome, Fertil. Steril., 2009, vol. 92, no. 2, pp. 653—659. https://doi.org/10.1016/j.fertnstert.2008.07.016

    Article  CAS  PubMed  Google Scholar 

  38. Echiburú, B., Pérez-Bravo, F., Maliqueo, M., et al., Polymorphism T→C (−34 base pairs) of gene CYP17 promoter in women with polycystic ovary syndrome is associated with increased body weight and insulin resistance: a preliminary study, Metabolism, 2008, vol. 57, no. 12, pp. 1765—1771. https://doi.org/10.1016/j.metabol.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  39. Mohammad, M.B. and Seghinsara, A.M., Polycystic ovary syndrome (PCOS), diagnostic criteria, and AMH, Asian Pac. J. Cancer Prev., 2017, vol. 18, no. 1, p. 17. https://doi.org/10.22034/APJCP.2017.18.1.17

    Article  PubMed Central  Google Scholar 

  40. Cinar, N., Kizilarslanoglu, M.C., Harmanci, A., et al., Depression, anxiety and cardiometabolic risk in polycystic ovary syndrome. Hum. Reprod., 2011, vol. 26, no. 12, pp. 3339—3345. https://doi.org/10.1093/humrep/der338

    Article  PubMed  Google Scholar 

  41. Ehrmann, D.A., Polycystic ovary syndrome, N. Engl. J. Med., 2005, vol. 352, no. 12, pp.1223—1236. https://doi.org/10.1056/NEJM199509283331307

    Article  CAS  PubMed  Google Scholar 

  42. Thathapudi, S., Kodati, V., Erukkambattu, J., et al., Tumor necrosis factor-alpha and polycystic ovarian syndrome: a clinical, biochemical, and molecular genetic study, Genet. Test. Mol. Biomarkers, 2014, vol. 18, no. 9, pp. 605—609. https://doi.org/10.1089/gtmb.2014.0151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Deepika, M.L.N., Reddy, K.R., Rani, V.U., et al., Do ACE I/D gene polymorphism serve as a predictive marker for age at onset in PCOS?, J. Assisted Reprod. Genet., 2013, vol. 30, pp. 125—130. https://doi.org/10.1007/s10815-012-9906-8

    Article  CAS  Google Scholar 

  44. Kaur, R., Kaur, T., and Kaur, A., Genetic association study from North India to analyze association of CYP19A1 and CYP17A1 with polycystic ovary syndrome, J. Assisted Reprod. Genet., 2018, vol. 35, pp. 1123—1129. https://doi.org/10.1007/s10815-018-1162-0

    Article  Google Scholar 

  45. Haider, S., Mannan, N., Khan, A., and Qureshi, M.A., Influence of anthropometric measurements on abnormal gonadotropin secretion in women with polycystic ovary syndrome, J. Coll. Physicians Surg. Pak., 2014, vol. 24, no. 7, pp. 463—466.

    PubMed  Google Scholar 

  46. Zhang, J., Fan, P., Liu, H., et al., Apolipoprotein AI and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS, Hum. Reprod., 2012, vol. 27, no. 8, pp. 2484—2493. https://doi.org/10.1093/humrep/des191

    Article  CAS  PubMed  Google Scholar 

  47. Jiang, H., Si, M., Tian, T., et al., Adiposity and lipid metabolism indicators mediate the adverse effect of glucose metabolism indicators on oogenesis and embryogenesis in PCOS women undergoing IVF/ICSI cycles, Eur. J. Med. Res., 2023, vol. 28, no. 1, p. 216. https://doi.org/10.1186/s40001-023-01174-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors acknowledge infrastructural help from The University of Lahore, Sargodha Campus and Collaborating hospitals.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bashir.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The project was approved by the ethical committee of Department of Zoology, university of Lahore and the collaborating hospitals.

CONFLICT OF INTEREST

The authors of this work declare that they have no competing interests with any person, company and institutes. All authors are agreed to publish this paper on behalf of corresponding author.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, K., Anum, A., Idrees, I. et al. Elucidating the Molecular Genetics of Genes CYP19A1, CYP17, and FSHR Variants Association in Polycystic Ovarian Syndrome. Russ J Genet 60, 387–397 (2024). https://doi.org/10.1134/S1022795424030049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424030049

Keywords:

Navigation