Skip to main content
Log in

Uncovering Hidden Diversity: New Phylogeographic Pattern of Apodemus mystacinus (Danford and Alston, 1877) in Turkey and Iran

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This study aimed to investigate the genetic diversity and relationships among Apodemus mystacinus lineages by analyzing mitochondrial Cytochrome b sequences. The study included samples from Iranand south east Turkey (Hakkari and Şırnak), in addition to previously studied populations. The results showed differences in the relationships among lineages and the structure of the phylogenetic tree compared to previous studies. A. m. mystacinus lineage, represented by samples from southwest Anatolia and Crete, was located at the base of the tree. The Iranian specimens were clustered with the southeastern specimens of Turkey in a separate lineage, indicating a possible refugium for A. mystacinus populations during glacial periods. The study also suggested that the expansion of A. mystacinus into Anatolia and neighboring regions during the Pleistocene facilitated its colonization of the Aegean islands. The differentiation between A. m. euxinus lineage and the south east Anatolia-Iran lineage may have resulted from the ancestral population in eastern Turkey diverging into two different lineages with one expanding its range towards the Black Sea and the other migrating towards the Zagros Mountains in Iran. These findings contribute to the understanding of the evolutionary history and phylogeography of A. mystacinus in its main range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Michaux, J.R., Libois, R., Paradis, E., and Filippucci, M.G., Phylogeographic history of the yellow-necked fieldmouse (Apodemus flavicollis) in Europe and in the Near and Middle East, Mol. Phylogenet. Evol., 2004, vol. 32, pp. 788—798. https://doi.org/10.1016/j.ympev.2004.02.018

    Article  CAS  PubMed  Google Scholar 

  2. Macholán, M., Vyskočilová, M., Bonhomme, F., et al., Genetic variation and phylogeography of free-living mouse species (genus Mus) in the Balkans and the Middle East, Mol. Ecol., 2007, vol. 16, pp. 4774—4788. https://doi.org/10.1111/j.1365-294X.2007.03526.x

    Article  CAS  PubMed  Google Scholar 

  3. Krystufek, B., Luznik, M., and Buzan, E.V., Mitochondrial cytochrome b sequences resolve the taxonomy of fieldmice (Apodemus) in the Western Balkan refugium, Acta Theriol., 2012, vol. 57, pp. 1—7. https://doi.org/10.1007/s13364-011-0045-x

    Article  Google Scholar 

  4. Darvish, J., Mohammadi, Z., Ghorbani, F., et al., Phylogenetic relationships of Apodemus Kaup, 1829 (Rodentia: Muridae) species in the Eastern Mediterranean inferred from mitochondrial DNA, with emphasis on Iranian species, J. Mamm. Evol., 2015, vol. 22, pp. 583—595. https://doi.org/10.1007/s10914-015-9294-9

    Article  Google Scholar 

  5. Mohammadi, Z., Ghorbani, F., Kami, H.G., et al., Molecular phylogeny of the sub-genus Karstomys reveals genetic signature of post-glacial colonization of Apodemus mystacinus (Rodentia: Muridae) in the Zagros Mountains from different refugia, Zool. Sci., 2021, vol. 38, pp. 72—81. https://doi.org/10.2108/zs200065

    Article  CAS  Google Scholar 

  6. Olgun Karacan, G., Çolak, R., and Çolak, E., The roles of possible geographic barriers and geological events on the phylogeographic structure of the Eastern broad toothed field mouse (Apodemus mystacinus), Mammalia, 2021, vol. 85, pp. 401—411. https://doi.org/10.1515/mammalia-2020-0017

    Article  Google Scholar 

  7. Michaux, J., Bellinvia, E., and Lymberakis, P., Taxonomy, evolutionary history and biogeography of the broad-toothed field mouse (Apodemus mystacinus) in the eastern Mediterranean area based on mitochondrial and nuclear genes, Biol. J. Linn. Soc., 2005, vol. 85, pp. 53—63. https://doi.org/10.1111/j.1095-8312.2005.00469.x

    Article  Google Scholar 

  8. Suzuki, H., Sato, J.J., Tsuchiya, K., Luo, J., et al., Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia, Biol. J. Linn. Soc., 2003, vol. 80, pp. 469—481. https://doi.org/10.1046/j.1095-8312.2003.00253.x

    Article  Google Scholar 

  9. Kryštufek, B. and Vohralik, V., Mammals of Turkey and Cyprus:Rodentia II: Cricetinae, Muridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae, Castoridae, Slovenia: Science and Research Centre of the Republic of Slovenia, 2009.

    Google Scholar 

  10. Lewis, R.E., Lewis J.H., and Atallah, S.I., A review of Lebanese mammals: Lagomorpha and Rodentia, J. Zool., 1967, vol. 153, pp. 45—70. https://doi.org/10.1111/j.1469-7998.1967.tb05030.x

    Article  Google Scholar 

  11. Qumsiyeh, M.B., Mammals of the Holy Land, Lubbock: Texas Tech. University Press, 1996.

    Google Scholar 

  12. Neuhäuser, G., Die Muriden von Kleinasien, Z. Säugetierkd., 1936, vol. 11, pp. 161—236.

    Google Scholar 

  13. Çolak, E., Yiğit, N., Çolak, R., et al., Taxonomic status and distribution of Apodemus mystacinus (Danford and Alston, 1877) (Mammalia: Rodentia) in Turkey, Turk. J. Zool., 2004, vol. 28, pp. 285—294.

    Google Scholar 

  14. Vohralik, V., Frynta, D., Mikulova, P., et al., Multivariate morphometrics of Apodemus mystacinus in the Near East and its divergence from European A. m. epimelas (Mammalia: Rodentia), Isr. J. Zool., 2002, vol. 48, pp. 135—148. https://doi.org/10.1560/DTU719THT79T-9FDH

    Article  Google Scholar 

  15. Doyle, J., DNA Protocols for Plants, Berlin: Springer-Verlag, 1991. https://doi.org/10.1007/978-3-642-83962-7_18

  16. Irwin, D.M., Kocher, T.D., and Wilson, A.C., Evolution of the cytochrome-b gene of mammals, J. Mol. Evol., 1991, vol. 32, pp. 128—144. https://doi.org/10.1007/BF02515385

    Article  CAS  PubMed  Google Scholar 

  17. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95—98. https://doi.org/10.1021/bk-1999-0734.ch008

    Article  CAS  Google Scholar 

  18. Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 2015, vol. 32, no. 1, pp. 268—274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  19. Rambaut, A., FigTree v1.4, 2012. http://tree.bio.ed.ac. uk/software/figtree/.

  20. Kumar, S., Stecher, G., Li, M., et al., MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, no. 6. pp. 1547—1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37—48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  22. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., et al., DnaSP6: DNA sequence polymorphism analysis of large datasets, Mol. Biol. Evol., 2017, vol. 34, pp. 3299—3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  23. Tajima, F., The effect of change in population size on DNA polymorphism, Genetics, 1989, vol. 123, pp. 597—601. https://doi.org/10.1093/genetics/123.3.597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu, Y.X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, pp. 915—925. https://doi.org/10.1093/genetics/147.2.915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564—567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  26. Drummond, A.J. and Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 2007, vol. 7, no. 1, р. 214. https://doi.org/10.1186/1471-2148-7-214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rambaut, A., Suchard, M.A., and Drummond, A.J., Tracer, version 1.6, 2013. http://tree.bio.ed.ac.uk/software/tracer.

  28. Gvoždík, V., Moravec, J., Klütsch, C., and Kotlíka, P., Phylogeography of the Middle Eastern tree frogs (Hyla, Hylidae, Amphibia) as inferred from nuclear and mitochondrial DNA variation, with a description of a new species, Mol. Phylogenet. Evol., 2010, vol. 55, pp. 1146—1166. https://doi.org/10.1016/j.ympev.2010.03.015

    Article  PubMed  Google Scholar 

  29. İbiş, O., Tez, C., Özcan, S., et al., Insights into the Turkish and Iranian badgers (the genus Meles) based on the mitochondrial cytochrome b gene sequences, Vertebr. Zool., 2015, vol. 65, pp. 399—407. https://doi.org/10.3897/vz.65.e31533

    Article  Google Scholar 

  30. Neumann, K., Yiğit, N., Fritzsche, P., et al., Genetic structure of the Turkish hamster (Mesocricetus brandti), Mamm. Biol., 2017, vol. 86, pp. 84—86. https://doi.org/10.1016/j.mambio.2017.06.004

    Article  Google Scholar 

  31. Thanou, E., Paragamian, K., and Lymberakis, P., Social butlonely: species delimitation of social voles and the evolutionary history of the only Microtus species living in Africa, J. Zool. Syst. Evol. Res., 2020, vol. 58, pp. 475—498. https://doi.org/10.1111/jzs.12325

    Article  Google Scholar 

  32. Jablonski, D., Asztalos, M., Yılmaz, C., and Avcı, A., The range-wide mitochondrial lineage of Natrix natrix scutata (Pallas, 1771) presented in the northern Zagros Mountains, Evol. Syst., 2023, vol. 7, pp. 67—71. https://doi.org/10.3897/evolsyst.7.89662

    Article  Google Scholar 

  33. Steppan, S.J. and Schenk, J.J., Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates, PLoS One, 2017, vol. 12. https://doi.org/10.1371/journal.pone.0183070

Download references

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Ercüment Çolak from Ankara University, Turkey, for his invaluable assistance in collecting the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Olgun Karacan.

Ethics declarations

Conflict of interest. The author declares that he has no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olgun Karacan, G. Uncovering Hidden Diversity: New Phylogeographic Pattern of Apodemus mystacinus (Danford and Alston, 1877) in Turkey and Iran. Russ J Genet 59 (Suppl 1), 53–60 (2023). https://doi.org/10.1134/S1022795423130100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423130100

Keywords:

Navigation