Skip to main content
Log in

Analysis of the Genes That Determine the Dwarf Form of Watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai in the VIR Collection

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The dwarf watermelon forms, determined by bushiness and semi-bushiness, are of great economic importance, determining the rational use of sown areas owing to the high planting density and the possibility of mechanized processing and harvesting. In this regard, the study of genes that determine the small habitus of watermelon plants is an important task for accelerating the selection. The aim of this work was to analyze the known and search for new dwarf genes of watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai by analyzing the unique VIR collection of melon crops and selection forms of the Kuban experimental station of VIR. As a result, the known mutation in the dw-1 gene (ABC transporter) was revealed in all bush and ultra-bush genotypes, except for two samples from Azerbaijan. The dwarfism of these two samples was not associated with other known genes, dsh (gibberellin-20-oxidase) and df (gibberellin-3β-hydroxylase), or their copies df2 and dsh2 identified in the present study. Thus, the VIR collection of melon crops contains potentially new genes that determine the dwarfism of watermelon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tekhanovich, G.A., Elatskova, A.G., and Elatskova, Y.A., Genetic sources for breeding bushy and short-vine watermelon cultivars, Proc. Appl. Bot. Genet. Breed., 2019, vol. 180, no. 2, pp. 89—94. https://doi.org/10.30901/2227-8834-2019-2-89-94

    Article  Google Scholar 

  2. Peng, J., Richards, D.E., Hartley, N.M., et al., ‘Green revolution’ genes encode mutant gibberellin response modulators, Nature, 1999, vol. 400, no. 6741, pp. 256—261. https://doi.org/10.1038/22307

    Article  CAS  Google Scholar 

  3. Spielmeyer, W., Ellis, M.H., and Chandler, P.M., Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 13, pp. 9043—9048. https://doi.org/10.1073/pnas.132266399

    Article  CAS  Google Scholar 

  4. Multani, D.S., Briggs, S.P., Chamberlin, M.A., et al., Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants, Science, 2003, vol. 302, no. 5642, pp. 81—84. https://doi.org/10.1126/science.1086072

    Article  CAS  Google Scholar 

  5. Nomura, T., Jager, C.E., Kitasaka, Y., et al., Brassinosteroid deficiency due to truncated steroid 5 α-reductase causes dwarfism in the lk mutant of pea, Plant Physiol., 2004, vol. 135, no. 4, pp. 2220—2229. https://doi.org/10.1104/pp.104.043786

    Article  CAS  Google Scholar 

  6. Pearce, S., Saville, R., Vaughan, S.P., et al., Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat, Plant Physiol., 2011, vol. 157, no. 4, pp. 1820—1831. https://doi.org/10.1104/pp.111.183657

    Article  CAS  Google Scholar 

  7. Pearce, S., Saville, R., Vaughan, S.P., et al., A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.), Plant Mol. Biol., 2015, vol. 88, nos. 1—2, pp. 85—99. https://doi.org/10.1007/s11103-015-0310-5

    Article  CAS  Google Scholar 

  8. Shifriss, O., Developmental reversal of dominance in Cucurbita pepo, Proc. Am. Soc. Hortic. Sci., 1947, vol. 50, pp. 330—346.

    Google Scholar 

  9. Denna, D.W. and Munger, H.M., Morphology of the bush and vine habits and the allelism of the bush genes in Cucurbita maxima and C. pepo squash, Proc. Am. Soc. Hortic. Sci., 1963, vol. 82, pp. 370—377.

    Google Scholar 

  10. Robinson, R.W., Munger, H.M., Whitaker, T.W., and Bohn, G.W., Genes of the Cucurbitaceae, HortScience, 1976, vol. 11, no. 6, pp. 554—568.

    Article  Google Scholar 

  11. Paris, H.S. and Brown, R.N., The genes of pumpkin and squash, HortScience, 2005, vol. 40, no. 6, pp. 1620—1630. https://doi.org/10.21273/hortsci.40.6.1620

    Article  CAS  Google Scholar 

  12. Wang, S., Li, H., Zhang, Z., et al., Comparative mapping of the dwarf gene Bu from tropical pumpkin (Cucurbita moschata Duchesne), Hortic. Sin., 2011, vol. 38, no. 1, pp. 95—100.

    CAS  Google Scholar 

  13. Zhang, G., Ren, Y., Sun, H., et al., A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.), BMC Genomics, 2015, vol. 16, no. 1, p. 1101. https://doi.org/10.1186/s12864-015-2312-8

    Article  CAS  Google Scholar 

  14. Zhang, G., Ren, Y., Sun, H., et al., Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.), Mol. Breed., 2014, vol. 34, no. 3, pp. 949—961. https://doi.org/10.1007/s11032-014-0088-1

    Article  CAS  Google Scholar 

  15. Knavel, D.E., Inheritance of a short-internode mutant of ‘mainstream’ muskmelon, HortScience, 1990, vol. 25, no. 10, pp. 1274—1275. https://doi.org/10.21273/HORTSCI.25.10.1274

    Article  Google Scholar 

  16. Fukino, N., Ohara, T., Sugiyama, M., et al., Mapping of a gene that confers short lateral branching (slb) in melon (Cucumis melo L.), Euphytica, 2012, vol. 187, no. 1, pp. 133–143. https://doi.org/10.1007/S10681-012-0667-3/FIGURES/4

    Article  CAS  Google Scholar 

  17. Pitrat, M., Linkage groups in Cucumis melo L., J. Hered., 1991, vol. 82, no. 5, pp. 406—411. https://doi.org/10.1093/oxfordjournals.jhered.a111112

    Article  CAS  Google Scholar 

  18. Xin, M., Qin, Z., Wang, L., et al., Genetic identification of a dwarf mutant in cucumber (Cucumis sativus L.), Afr. J. Biotechnol., 2012, vol. 11, no. 20, pp. 4493—4498. https://doi.org/10.5897/AJB11.968

    Article  Google Scholar 

  19. Hou, S., Niu, H., Tao, Q., et al., A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.), Theor. Appl. Genet., 2017, vol. 130, no. 8, pp. 1693—1703. https://doi.org/10.1007/s00122-017-2919-z

    Article  CAS  Google Scholar 

  20. Wang, H., Li, W., Qin, Y., et al., The cytochrome P450 gene CsCYP85A1 is a putative candidate for super compact-1 (Scp-1) plant architecture mutation in cucumber (Cucumis sativus L.), Front. Plant Sci., 2017, vol. 8, pp. 1—13. https://doi.org/10.3389/fpls.2017.00266

    Article  Google Scholar 

  21. Kauffman, C.S. and Lower, R.L., Inheritance of an extreme dwarf plant type in the cucumber, J. Am. Soc. Hortic. Sci., 1976, vol. 101, no. 2, pp. 150—151.

    Article  Google Scholar 

  22. Kubicki, B., Soltysiak, U., and Korzeniewska, A., Induced mutation in cucumber (Cucumis sativus L.): V. Compact type of growth, Genet. Pol., 1986, vol. 27, pp. 3—4.

    Google Scholar 

  23. Lin, T., Wang, S., Zhong, Y., et al., A truncated F-box protein confers the dwarfism in cucumber, J. Genet. Genomics, 2016, vol. 43, no. 4, pp. 223—226. https://doi.org/10.1016/j.jgg.2016.01.007

    Article  Google Scholar 

  24. Xu, L., Wang, C., Cao, W., et al., CLAVATA1-type receptor-like kinase CsCLAVATA1 is a putative candidate gene for dwarf mutation in cucumber, Mol. Genet. Genomics, 2018, vol. 293, no. 6, pp. 1393—1405. https://doi.org/10.1007/s00438-018-1467-9

    Article  CAS  Google Scholar 

  25. Li, Y., Yang, L., Pathak, M., et al., Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L., Theor. Appl. Genet., 2011, vol. 123, no. 6, pp. 973—983. https://doi.org/10.1007/s00122-011-1640-6

    Article  Google Scholar 

  26. Van der Linden, L., Patent WO/2017/042272, 2018.

  27. Liu, P.B.W. and Loy, J.B., Inheritance and morphology of two dwarf mutants in watermelon, Am. Soc. Hortic. Sci. J., 1972, pp. 745—748.

    Google Scholar 

  28. Mohr, H.C. and Sandhu, M.S., Inheritance and morphological traits of a double recessive dwarf in watermelon, Citrullus lanatus (Thunb.) Mansf., J. Am. Soc. Hortic. Sci., 1975, vol. 100, no. 2, pp. 135—137.

    Article  Google Scholar 

  29. Dyutin, K.E. and Afanasyeva, E.A., Inheritance of the short vine trait in watermelon, Tsitol. Genet., 1987, vol. 21, no. 3, pp. 227—229.

    Google Scholar 

  30. Hexun, H., Xiaoqi, Z., Zhencheng, W., et al., Inheritance of male-sterility and dwarfism in watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai), Sci. Hortic. (Amsterdam), 1998, vol. 74, no. 3, pp. 175—181. https://doi.org/10.1016/S0304-4238(97)00102-7

    Article  Google Scholar 

  31. Dong, W., Wu, D., Li, G., et al., Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon, Sci. Rep., 2018, vol. 8, no. 1, p. 2908. https://doi.org/10.1038/s41598-018-21293-1

    Article  CAS  Google Scholar 

  32. Dong, W., Wu, D., Wang, C., et al., Characterization of the molecular mechanism underlying the dwarfism of dsh mutant watermelon plants, Plant Sci., 2021, vol. 313, p. 111074. https://doi.org/10.1016/j.plantsci.2021.111074

    Article  CAS  Google Scholar 

  33. Zhu, H., Zhang, M., Sun, S., et al., A single nucleotide deletion in an ABC transporter gene leads to a dwarf phenotype in watermelon, Front. Plant Sci., 2019, vol. 10, pp. 1—13. https://doi.org/10.3389/fpls.2019.01399

    Article  Google Scholar 

  34. Cho, Y., Lee, S., Park, J., et al., Identification of a candidate gene controlling semi-dwarfism in watermelon, Citrullus lanatus, using a combination of genetic linkage mapping and QTL-seq, Hortic. Environ. Biotechnol., 2021, vol. 62, no. 3, pp. 447—459. https://doi.org/10.1007/S13580-020-00330-X/TABLES/3

    Article  CAS  Google Scholar 

  35. Gebremeskel, H., Dou, J., Li, B., et al., Molecular mapping and candidate gene analysis for GA3 responsive short internode in watermelon (Citrullus lanatus), Int. J. Mol. Sci., 2019, vol. 21, no. 1, p. 290. https://doi.org/10.3390/ijms21010290

    Article  CAS  Google Scholar 

  36. Wei, C., Zhu, C., Yang, L., et al., A point mutation resulting in a 13 bp deletion in the coding sequence of Cldf leads to a GA-deficient dwarf phenotype in watermelon, Hortic. Res., 2019, vol. 6, no. 1, p. 132. https://doi.org/10.1038/s41438-019-0213-8

    Article  CAS  Google Scholar 

  37. Zhang, T., Liu, J., Amanullah, S., et al., Fine mapping of Cla015407 controlling plant height in watermelon, J. Am. Soc. Hortic. Sci., 2021, vol. 146, no. 3, pp. 196—205. https://doi.org/10.21273/JASHS04934-20

    Article  CAS  Google Scholar 

  38. Sun, Y., Zhang, H., Fan, M., et al., A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon (Citrullus lanatus L.), Sci. Rep., 2020, vol. 10, no. 1, p. 14915. https://doi.org/10.1038/s41598-020-71861-7

  39. Kong, Q., Yuan, J., Gao, L., et al., Evaluation of appropriate reference genes for gene expression normalization during watermelon fruit development, PLoS One, 2015, vol. 10, no. 6. e0130865. https://doi.org/10.1371/journal.pone.0130865

    Article  CAS  Google Scholar 

  40. Tekhanovich, G.A., Elatskova, A.G., and Elatskov, Yu.A., The role of the world collection of cultivated cucurbits of VIR in breeding, Tr. Prikl. Bot., Genet. Sel., 2012, vol. 169, pp. 289—294.

    Google Scholar 

  41. Guo, S., Zhang, J., Sun, H., et al., The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions, Nat. Genet., 2013, vol. 45, no. 1, pp. 51—58. https://doi.org/10.1038/ng.2470

    Article  CAS  Google Scholar 

  42. Guo, S., Zhao, J., Sun, H., et al., Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits, Nat. Genet., 2019, vol. 51, no. 11, pp. 1616—1623. https://doi.org/10.1038/s41588-019-0518-4

    Article  CAS  Google Scholar 

  43. Dou, J., Zhao, S., Lu, X., et al., Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.), Theor. Appl. Genet., 2018, vol. 131, no. 4, pp. 947—958. https://doi.org/10.1007/s00122-018-3050-5

    Article  CAS  Google Scholar 

  44. Legendre, R., Kuzy, J., and McGregor, C., Markers for selection of three alleles of ClSUN25-26-27a (Cla011257) associated with fruit shape in watermelon, Mol. Breed., 2020, vol. 40, no. 2, p. 19. https://doi.org/10.1007/s11032-020-1104-2

    Article  CAS  Google Scholar 

  45. Tian, S., Jiang, L., Gao, Q., et al., Efficient CRISPR/ Cas9-based gene knockout in watermelon, Plant Cell Rep., 2017, vol. 36, no. 3, pp. 399—406. https://doi.org/10.1007/s00299-016-2089-5

    Article  CAS  Google Scholar 

  46. Wang, Y., Wang, J., Guo, S., et al., CRISPR/Cas9-mediated mutagenesis of ClBG1 decreased seed size and promoted seed germination in watermelon, Hortic. Res., 2021, vol. 8, no. 1, p. 70. https://doi.org/10.1038/s41438-021-00506-1

    Article  CAS  Google Scholar 

  47. Tian, S., Jiang, L., Cui, X., et al., Engineering herbicide-resistant watermelon variety through CRISPR/ Cas9-mediated base-editing, Plant Cell Rep., 2018, vol. 37, no. 9, pp. 1353—1356. https://doi.org/10.1007/s00299-018-2299-0

    Article  CAS  Google Scholar 

  48. Zhang, J., Guo, S., Ji, G., et al., A unique chromosome translocation disrupting ClWIP1 leads to gynoecy in watermelon, Plant J., 2020, vol. 101, no. 2, pp. 265—277. https://doi.org/10.1111/tpj.14537

    Article  CAS  Google Scholar 

  49. Zhang, M., Liu, Q., Yang, X., et al., CRISPR/Cas9-mediated mutagenesis of Clpsk1 in watermelon to confer resistance to Fusarium oxysporum f.sp. niveum, Plant Cell Rep., 2020, vol. 39, no. 5, pp. 589—595. https://doi.org/10.1007/s00299-020-02516-0

    Article  CAS  Google Scholar 

  50. Tekhanovich, G.A., Elatskova, A.G., and Elatskov, Yu.A., New sources of the genetic collection of cultivated cucurbits, in Nauchnoe obespechenie proizvodstva sel’skokhozyaistvennykh kul’tur v sovremennykh usloviyakh (Scientific Support for the Production of Agricultural Crops in Modern Conditions), 2016, pp. 198—203.

    Google Scholar 

  51. Miao, H., Zhang, S., Wang, M., et al., Fine mapping of virescent leaf gene v-1 in cucumber (Cucumis sativus L.), Int. J. Mol. Sci., 2016, vol. 17, no. 10, p. 1602. https://doi.org/10.3390/ijms17101602

    Article  CAS  Google Scholar 

  52. Zhang, K., Li, Y., Zhu, W., et al., Fine mapping and transcriptome analysis of virescent leaf gene v-2 in cucumber (Cucumis sativus L.), Front. Plant Sci., 2020, vol. 11, p. 1458. https://doi.org/10.3389/FPLS.2020.570817/BIBTEX

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Anastasia Yanyshevskaya (student at St. Petersburg University) for technical support.

Funding

Identification of the dw-1 donors in the collection of watermelon of VIR using DNA markers was carried out under support of the Ministry of Science and Higher Education of the Russian Federation, project no. 075-15-2020-911 from November 16, 2020, which provided the grant in the form of subsidy from the federal budget in order to provide governmental support for foundation and development of the world-level scientific center Agrotechnologies of the Future. Screening of new genes of watermelon bushiness was performed within the framework of research project no. 0481-2019-0001/0481-2022-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Strygina.

Ethics declarations

The authors declare no conflicts of interest.

The present article does not contain any studies carried out with animals as objects.

The present article does not contain any studies carried out with humans as objects.

Additional information

Translated by M. Bibov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strygina, K.V., Elatskova, A.G., Elatskov, Y.A. et al. Analysis of the Genes That Determine the Dwarf Form of Watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai in the VIR Collection. Russ J Genet 58, 1457–1472 (2022). https://doi.org/10.1134/S1022795422120134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422120134

Keywords:

Navigation