Skip to main content
Log in

STR Typing of European Elk (Moose) and European Roe Deer with Novel Forensic Assays Reveals Contrasting Patterns of Genetic Structure of the Two Cervids in Belarus

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Cervids are popular game mammals and frequent victims of poaching in Europe. Investigation into illegal hunting and commercialisation often requires not only species identification, but also assignment of animal samples to an individual. For the purpose of wildlife forensic identity testing, we developed DNA typing assays for two common cervid species of Europe: European elk (Alces alces) and European roe deer (Capreolus capreolus), which comprised 16 and 12 short tandem repeats (STRs), respectively. The assays were tested for robustness in individualisation of biological samples based on data from 386 elk and 360 roe deer from all administrative regions of Belarus. Analysis of molecular variance revealed almost countrywide genetic homogeneity of elk and significant genetic differentiation of local roe deer. Reduced genetic diversity in European elk from Belarus compared to Siberia and historically documented massive population decline followed by rapid expansion explain the observed genetic structure as legacy of homogeneous genetic substrate inherited from a small ancestral population after genetic bottleneck in the 1920s. On the other hand, the observed geographic stratification of European roe deer is likely to result from numerous genetic drifts and/or local interspecies gene flow with Siberian roe deer (Capreolus pygargus), driven both naturally and artificially by large-scale releases of individuals of both roe deer species in Eastern Europe in the 20th century. Power of discrimination of unrelated individuals based on the pan-Belarusian database for European elk was higher than 0.99999999999. In case of regional databases for European roe deer, the value exceeded 0.999999999. Our results demonstrate the developed STR assays to be highly efficient tools for verification of genetic identity of cervid specimens, even in case of populations which suffered from massive population decline. To our knowledge, this is the first study presenting genetic identity testing assays for European elk and roe deer samples with a number of STR markers and statistical parameters sufficient to generate extremely strong DNA evidence in wildlife forensic casework, which were used to characterise genetic structure on a broad countrywide scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Gilbert, C., Ropiquet, A., and Hassanin, A., Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography, Mol. Phylogenet. Evol., 2006, vol. 40, no. 1, pp. 101—117. https://doi.org/10.1016/j.ympev.2006.02.017

    Article  Google Scholar 

  2. Kozorez, A., Recourses of Belarusian Cervids, Lesn. Okhotnich’e Khoz., 2014, vol. 136, no. 11, pp. 42—47.

    Google Scholar 

  3. Tobe, S.S., Kitchener, A.C., and Linacre, A.M.T., Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes, PLoS One, 2010, vol. 5, no. 11. e14156. https://doi.org/10.1371/journal.pone.0014156

    Article  Google Scholar 

  4. Butler, J.M., Advanced Topics in Forensic DNA Typing: Methodology, Waltham: Elsevier, 2012.

    Google Scholar 

  5. Linacre, A., Gusmão, L., Hecht, W., et al., ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations, Forensic Sci. Int. Genet., 2011, vol. 5, no. 5, pp. 501—505. https://doi.org/10.1016/j.fsigen.2010.10.017

    Article  Google Scholar 

  6. Rębała, K., Rabtsava, A.A., Kotova, S.A., et al., STR profiling for discrimination between wild and domestic swine specimens and between main breeds of domestic pigs reared in Belarus, PLoS One, 2016, vol. 11, no. 11. e0166563. https://doi.org/10.1371/journal.pone.0166563

    Article  Google Scholar 

  7. Burbaitė, L. and Csányi, S., Roe deer population and harvest changes in Europe, Estonian J. Ecol., 2009, vol. 58, no. 3, pp. 169—180. https://doi.org/10.3176/eco.2009.3.02

    Article  Google Scholar 

  8. Burbaitė, L. and Csányi, S., Red deer population and harvest changes in Europe, Acta Zool. Litu., 2010, vol. 20, no. 4, pp. 179—188. https://doi.org/10.2478/v10043-010-0038-z

    Article  Google Scholar 

  9. Jones, K.C., Levine, K.F., and Banks, J.D., DNA-based genetic markers in black-tailed and mule deer for forensic applications, Calif. Fish Game, 2000, vol. 86, no. 2, pp. 115—126.

    Google Scholar 

  10. Jones, K.C., Levine, K.F., and Banks, J.D., Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis), Mol. Ecol. Notes, 2002, vol. 2, no. 4, pp. 425—427. https://doi.org/10.1046/j.1471-8286.2002.00264.x

    Article  Google Scholar 

  11. Meredith, E.P., Rodzen, J.A., Levine, K.F., and Banks, J.D., Characterization of an additional 14 microsatellite loci in California elk (Cervus elaphus) for use in forensic and population applications, Conserv. Genet., 2005, vol. 6, no. 1, pp. 151—153. https://doi.org/10.1007/s10592-004-7735-8

    Article  Google Scholar 

  12. Smith, P.F., DenDanto, D., Smith, K.T., et al., Allele frequencies for three STR loci RT24, RT09, and BM1225 in northern New England white-tailed deer, J. Forensic Sci., 2002, vol. 47, no. 3, pp. 673—675. https://doi.org/10.1520/JFS15312J

    Article  Google Scholar 

  13. Szabolcsi, Z., Egyed, B., Zenke, P., et al., Constructing STR multiplexes for individual identification of Hungarian red deer, J. Forensic Sci., 2014, vol. 59, no. 4, pp. 1090—1099. https://doi.org/10.1111/1556-4029.12403

    Article  Google Scholar 

  14. Socratous, E., Graham, E.A.M., and Rutty, G.N., Forensic DNA profiling of Cervus elaphus species in the United Kingdom, Forensic Sci. Int. Genet. Suppl. Ser., 2009, vol. 2, no. 1, pp. 281—282. https://doi.org/10.1016/j.fsigss.2009.08.127

    Article  Google Scholar 

  15. Guglich, E.A., Wilson, P.J., and White, B.N., Application of DNA fingerprinting to enforcement of hunting regulations in Ontario, J. Forensic Sci., 1993, vol. 38, no. 1, pp. 48—59. https://doi.org/10.1520/JFS13375J

    Article  Google Scholar 

  16. Mörsch, G. and Leibenguth, F., DNA fingerprinting in roe deer using the digoxigenated probe (GTG)5, Anim. Genet., 1994, vol. 25, no. 1, pp. 25—30. https://doi.org/10.1111/j.1365-2052.1994.tb00051.x

    Article  Google Scholar 

  17. Carracedo, A. and Sánchez-Diz, P., Forensic DNA-typing technologies: a review, in Methods in Molecular Biology, vol. 297: Forensic DNA Typing Protocols, Carracedo, A., Ed., Totowa: Humana, 2005, pp. 1—11.

  18. Kalbfleisch, T.S., Murdoch, B.M., Smith, T.P.L., et al., A SNP resource for studying North American moose, F1000Res., 2018, vol. 7, p. 40. https://doi.org/10.12688/f1000research.13501.1

    Article  Google Scholar 

  19. Sobrino, B., Brión, M., and Carracedo, A., SNPs in forensic genetics: a review on SNP typing methodologies, Forensic Sci. Int., 2005, vol. 154, nos. 2—3, pp. 181—194. https://doi.org/10.1016/j.forsciint.2004.10.020

    Article  Google Scholar 

  20. Vial, L., Maudet, C., and Luikart, G., Thirty-four polymorphic microsatellites for European roe deer, Mol. Ecol. Notes, 2003, vol. 3, no. 4, pp. 523—527. https://doi.org/10.1046/j.1471-8286.2003.00499.x

    Article  Google Scholar 

  21. Schmidt, J.I., Hundertmark, K.J., Bowyer, R.T., and McCracken, K.G., Population structure and genetic diversity of moose in Alaska, J. Hered., 2009, vol. 100, no. 2, pp. 170—180. https://doi.org/10.1093/jhered/esn076

    Article  Google Scholar 

  22. Bishop, M.D., Kappes, S.M., Keele, J.W., et al., A genetic linkage map for cattle, Genetics, 1994, vol. 136, no. 2, pp. 619—639. https://doi.org/10.1093/genetics/136.2.619

    Article  Google Scholar 

  23. Bonnot, N., Gaillard, J.M., Coulon, A., et al., No difference between the sexes in fine-scale spatial genetic structure of roe deer, PLoS One, 2010, vol. 5, no. 12. e14436. https://doi.org/10.1371/journal.pone.0014436

    Article  Google Scholar 

  24. Kuehn, R., Hindenlang, K.E., Holzgang, O., et al., Genetic effect of transportation infrastructure on roe deer populations (Capreolus capreolus), J. Hered., 2007, vol. 98, no. 1, pp. 13—22. https://doi.org/10.1093/jhered/esl056

    Article  Google Scholar 

  25. Cronin, M.A., Patton, J.C., Balmysheva, N., and MacNeil, M.D., Genetic variation in caribou and reindeer (Rangifer tarandus), Anim. Genet., 2003, vol. 34, no. 1, pp. 33—41. https://doi.org/10.1046/j.1365-2052.2003.00927.x

    Article  Google Scholar 

  26. Kemp, S.J., Hishida, O., Wambugu, J., et al., A panel of polymorphic bovine, ovine and caprine microsatellite markers, Anim. Genet., 1995, vol. 26, no. 5, pp. 299—306. https://doi.org/10.1111/j.1365-2052.1995.tb02663.x

    Article  Google Scholar 

  27. Swarbrick, P.A., Dietz, A.B., Womack, J.E., and Crawford, A.M., Ovine and bovine dinucleotide repeat polymorphism at the MAF46 locus, Anim. Genet., 1992, vol. 23, no. 2, p. 182. https://doi.org/10.1111/j.1365-2052.1992.tb00040.x

    Article  Google Scholar 

  28. Røed, K.H., and Midthjell, L., Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids, Mol. Ecol., 1998, vol. 7, no. 12, pp. 1773—1776. https://doi.org/10.1046/j.1365-294x.1998.00514.x

    Article  Google Scholar 

  29. Wilson, G.A., Strobeck, C., Wu, L., and Coffin, J.W., Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls, Mol. Ecol., 1997, vol. 6, no. 7, pp. 697—699. https://doi.org/10.1046/j.1365-294x.1997.00237.x

    Article  Google Scholar 

  30. Meredith, E.P., Rodzen, J.A., Banks, J.D., et al., Microsatellite analysis of three subspecies of elk (Cervus elaphus) in California, J. Mammal., 2007, vol. 88, no. 3, pp. 801—808. https://doi.org/10.1644/06-MAMM-A-014R.1

    Article  Google Scholar 

  31. Gurgul, A., Radko, A., and Słota, E., Characteristics of X- and Y-chromosome specific regions of the amelogenin gene and a PCR-based method for sex identification in red deer (Cervus elaphus), Mol. Biol. Rep., 2010, vol. 37, no. 6, pp. 2915—2918. https://doi.org/10.1007/s11033-009-9852-4

    Article  Google Scholar 

  32. Excoffier, L., Laval, G., and Schneider, S., Arlequin (version 3.0): an integrated software package for population genetics data analysis, Evol. Bioinf. Online, 2005, vol. 1, pp. 47—50.

    Google Scholar 

  33. Tereba, A., Tools for analysis of population statistics, Profiles DNA, 1999, vol. 2, no. 3, pp. 14—16.

    Google Scholar 

  34. Rębała, K., Mikulich, A.I., Tsybovsky, I.S., et al., Common Y-chromosomal STR database for three closely related European populations, Int. Congr. Ser., 2006, vol. 1288, pp. 177—179. https://doi.org/10.1016/j.ics.2005.09.120

    Article  Google Scholar 

  35. Ferguson, B., Street, S.L., Wright, H., et al., Single nucleotide polymorphisms (SNPs) distinguish Indian-origin and Chinese-origin rhesus macaques (Macaca mulatta), BMC Genomics, 2007, vol. 8, p. 43. https://doi.org/10.1186/1471-2164-8-43

    Article  Google Scholar 

  36. Fan, H. and Chu, J.Y., A brief review of short tandem repeat mutation, Genom. Proteom. Bioinf., 2007, vol. 5, no. 1, pp. 7—14. https://doi.org/10.1016/S1672-0229(07)60009-6

    Article  Google Scholar 

  37. Ball, M.C., Finnegan, L.A., Nette, T., et al., Wildlife forensics: “supervised” assignment testing can complicate the association of suspect cases to source populations, Forensic Sci. Int. Genet., 2011, vol. 5, no. 1, pp. 50—56. https://doi.org/10.1016/j.fsigen.2010.02.002

    Article  Google Scholar 

  38. Sim, Z., Monderman, L., Hildebrand, D., et al., Development and implementation of a STR based forensic typing system for moose (Alces alces), Forensic Sci. Int. Genet., 2021, vol. 53, p. 102536. https://doi.org/10.1016/j.fsigen.2021.102536

    Article  Google Scholar 

  39. Poetsch, M., Seefeldt, S., Maschke, M., and Lignitz, E., Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer—possible employment in forensic applications, Forensic Sci. Int., 2001, vol. 116, no. 1, pp. 1—8. https://doi.org/10.1016/s0379-0738(00)00337-6

    Article  Google Scholar 

  40. Reimoser, F. and Reimoser, S., Long-term trends of hunting bags and wildlife populations in Central Europe, Beitr. Jagd. Wildforsch., 2016, vol. 41, pp. 29—43.

    Google Scholar 

  41. Buckleton, J., A framework for interpreting evidence, in Forensic DNA Evidence Interpretation, Buckleton, J., Triggs, C.M., and Walsh, S.J., Eds., Boca Raton: CRC Press, 2005, pp. 27—63.

    Google Scholar 

  42. Morf, N.V., Kopps, A.M., Nater, A., et al., STRoe deer: a validated forensic STR profiling system for the European roe deer (Capreolus capreolus), Forensic Sci. Int. Anim. Environ., 2021, vol. 1, р. 100023. https://doi.org/10.1016/j.fsiae.2021.100023

    Article  Google Scholar 

  43. Bowyer, R.T., Boyce, M.S., Goheen, J.R., and Rachlow, J.L., Conservation of the world’s mammals: status, protected areas, community efforts, and hunting, J. Mammal., 2019, vol. 100, no. 3, pp. 923—941. https://doi.org/10.1093/jmammal/gyy180

    Article  Google Scholar 

  44. Harris, R.B., Wall, W.A., and Allendorf, F.W., Genetic consequences of hunting: what do we know and what should we do?, Wildl. Soc. Bull., 2002, vol. 30, no. 2, pp. 634—643.

    Google Scholar 

  45. Seržanin, I.N., Mlekopitajuščie Belorussii (Mammals of Belorussia), Minsk: Akademia Nauk Belorusskoi SSR, 1961, 2nd ed.

  46. Hundertmark, K.J. and Bowyer, R.T., Genetics, evolution, and phylogeography of moose, Alces, 2004, vol. 40, pp. 103—122.

    Google Scholar 

  47. Rožkov, J.I., Pronjaev, A.V., Davydov, A.V., et al., Los’: populjacionnaja biologija i mikroèvoljucija (Population Biology and Microevolution), Moscow: KMK, 2009.

  48. Świsłocka, M., Czajkowska, M., Duda, N., and Ratkiewicz, M., Admixture promotes genetic variation in bottlenecked moose populations in eastern Poland, Mamm. Res., 2015, vol. 60, no. 2, pp. 169—179. https://doi.org/10.1007/s13364-015-0221-5

    Article  Google Scholar 

  49. Plakhina, D.A., Zvychaynaya, E.Y., Kholodova, M.V., and Danilkin, A.A., Identification of European (Capreolus capreolus L.) and Siberian (C. pygargus Pall.) roe deer hybrids by microsatellite marker analysis, Russ. J. Genet., 2014, vol. 50, no. 7, pp. 757—762. https://doi.org/10.1134/S1022795414070151

    Article  Google Scholar 

  50. Kashinina, N.V., Danilkin, A.A., Zvychaynaya, E.Y., et al., On the gene pool of roe deer (Capreolus) of Eastern Europe: analysis of the cyt b gene sequence variability, Russ. J. Genet., 2018, vol. 54, no. 7, pp. 825—831. https://doi.org/10.1134/S1022795418070049

    Article  Google Scholar 

  51. Zhivotovsky, L.A., Malyarchuk, B.A., Derenko, M.V., et al., Developing STR databases on structured populations: the native south Siberian population versus the Russian population, Forensic Sci. Int. Genet., 2009, vol. 3, no. 4, pp. e111—e116. https://doi.org/10.1016/j.fsigen.2008.08.001

    Article  Google Scholar 

  52. Buckleton, J., Population genetic models, in Forensic DNA Evidence Interpretation, Buckleton, J., Triggs, C.M., and Walsh, S.J., Eds., Boca Raton: CRC Press, 2005, pp. 65—122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rębała.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rębała, K., Nedzvetskaya, D.E., Kotova, S.A. et al. STR Typing of European Elk (Moose) and European Roe Deer with Novel Forensic Assays Reveals Contrasting Patterns of Genetic Structure of the Two Cervids in Belarus. Russ J Genet 58, 1493–1503 (2022). https://doi.org/10.1134/S1022795422120109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422120109

Keywords:

Navigation