Skip to main content
Log in

Using of Molecular Markers in Prediction of Wheat (Triticum aestivum L.) Hybrid Grain Yield Based on Artificial Intelligence Methods and Multivariate Statistics

  • MATHEMATICAL MODELS AND METHODS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The present study used multivariate statistics and two artificial intelligence systems of neural networks (multilayer perceptron (MLP) and Adaptive Neuro-Fuzzy Inference System (ANFIS)) to predict hybrid performance of wheat. Eight cultivars, namely Kouhdasht, Mehregan, Karim, line 17, N-80-19, Atrak, N-92-9, and Ehsan were crossed. Agronomical, phenological and morphological attributes including, days to emergency, days to flowering, days to maturity, flag leaf length, flag leaf weight, flag leaf width, length of grain filling period, number of spikes, number of grains per spike, spike weight per plant, grain yield, plant height, awn length, peduncle length, spike length, stem diameter, stem weight, total spike weight, and grain weight per spike were recorded. Polymorphic Informative Content for markers ranged from 0.791 for the BARC173 to 0.194 for the XBARC171. Regression analysis showed that twenty-nine SSR informative alleles were related to traits. Then, SSR informative alleles were used as input of artificial intelligence methods. Five algorithms were used for network training to predict grain yield. Based on the analysis of MLP, the validation accuracy prediction varied from 0.96 for the phenotypic data to 0.99 for the combined data. The ANFIS with five inputs and the least mean square error and an accuracy of more than 98% was the best system to estimate hybrid yield using phenotypic data. Yield of hybrids evaluated by the neural-genetic model to predict hybrid yield of wheat by the phenotypic and genetic characteristics of parents, and it was recommended as a suitable and reliable model to predict the best hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Albrecht, T., Auinger, H.J., Wimmer, V., et al., Genome-based prediction of maize hybrid yield across genetic groups, testers, locations, and years, Theor. Appl. Genet., 2014, vol. 127, no. 6, pp. 1375—1386. https://doi.org/10.1007/s00122-014-2305-z

    Article  PubMed  Google Scholar 

  2. Jang, J.S., ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst., Man, Cybern., 1993, vol. 23, pp. 665—685.

    Article  Google Scholar 

  3. Araus, J.L., Li, J., Parry, M.A., and Wang, J., Phenotyping and other breeding approaches for a New Green Revolution, J. Integr. Plant Biol., 2014, vol. 56, no. 5, pp. 422—424. https://doi.org/10.1111/jipb.12202

    Article  PubMed  Google Scholar 

  4. Cassman, K.G., Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 11, pp. 5952—5959. https://doi.org/10.1073/pnas.96.11.5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crain, J., Mondal, S., Rutkoski, J., et al., Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding, Plant Genome, 2018, vol. 11, no. 1, p. 170043. https://doi.org/10.3835/plantgenome2017.05.0043

    Article  Google Scholar 

  6. Emamgholizadeh, S., Parsaeian, M., and Baradaran, M., Seed yield prediction of sesame using artificial neural network, Eur. J. Agron., 2015, vol. 68, pp. 89—96. https://doi.org/10.1016/j.eja.2015.04.010

    Article  Google Scholar 

  7. Farjam, A., Omid, M., Akram, A., and Fazel Niari, Z., A neural network-based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields, J. Agric. Sci. Technol., 2014, vol. 16, no. 4, pp. 767—778. http://journals.modares.ac.ir/article-23-5916-en.html.

    Google Scholar 

  8. González Sánchez, A., Frausto Solís, J., and Ojeda Bustamante, W., Predictive ability of machine learning methods for massive crop yield prediction, Span. J. Agric. Res., 2014, vol. 12, no. 2, pp. 313—328. https://doi.org/10.5424/sjar/2014122-4439

    Article  Google Scholar 

  9. Gowda, M., Zhao, Y., Maurer, H.P., et al., Best linear unbiased prediction of triticale hybrid yield, Euphytica, 2013, vol. 191, no. 2, pp. 223—230. https://doi.org/10.1007/s10681-012-0784-z

    Article  Google Scholar 

  10. Haykin, S., Neural Networks: A Comprehensive Foundation, Upper Saddle River, NJ: Prentice Hall, 1994.

    Google Scholar 

  11. Horie, T., Yajima, M., and Nakagawa, H., Yield forecasting, Agric. Syst., 1992, vol. 40, nos. 1—3, pp. 211—236. https://doi.org/10.1016/0308-521X(92)90022-G

    Article  Google Scholar 

  12. Hornik, K., Stinchcombe, M., and White, H., Multilayer feed forward networks are universal approximators, Neural Networks, 1989, vol. 2, no. 5, pp. 359—366.

    Article  Google Scholar 

  13. Jan, H.U., Abbadi, A., Lücke, S., et al., Genomic prediction of testcross yield in canola (Brassica napus), PLoS One, 2016, vol. 11, no. 1. e0147769. https://doi.org/10.1371/journal.pone.0147769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kadam, D.C., Potts, S.M., Bohn, M.O., et al., Genomic prediction of single crosses in the early stages of a maize hybrid breeding pipeline, Genes, Genomes, Genet., 2016, vol. 6, no. 11, pp. 3443—3453. https://doi.org/10.1534/g3.116.031286

    Article  Google Scholar 

  15. Khademikia, S., Haghizadeh, A., Godini, H., and Khorramabadi, G.S., Artificial Neural Network-Cuckoo Optimization Algorithm (ANN-COA) for optimal control of Khorramabad wastewater treatment plant, Iran, Civil Eng. J., 2016, vol. 2, no. 11, pp. 555—567. https://doi.org/10.28991/cej-2016-00000058

    Article  Google Scholar 

  16. Niazian, M., Sadat-Noori, S.A., and Abdipour, M., Modeling the seed yield of ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models, Ind. Crops Prod., 2018, vol. 117, pp. 224—234. https://doi.org/10.1016/j.indcrop.2018.03.013

    Article  Google Scholar 

  17. Niedbała, G., Simple model based on artificial neural network for early prediction and simulation winter rapeseed yield, J. Integr. Agric., 2019, vol. 18, no. 1, pp. 54—61. https://doi.org/10.1016/S2095-3119(18)62110-0

    Article  Google Scholar 

  18. Philipp, N., Liu, G., Zhao, Y., et al., Genomic prediction of barley hybrid performance, Plant Genom., 2016, vol. 9, no. 2, pp. 1—8. https://doi.org/10.3835/plantgenome2016.02.0016

    Article  Google Scholar 

  19. Rad, M.R.N., Fanaei, H.R., and Rad, M.R.P., Application of artificial neural networks to predict the final fruit weight and random forest to select important variables in native population of melon (Cucumis melo L.), Sci. Hortic., 2015, vol. 181, pp. 108—112. https://doi.org/10.1016/j.scienta.2014.10.025

    Article  Google Scholar 

  20. Ray, D.K., Mueller, N.D., West, P.C., and Foley, J.A., Yield trends are insufficient to double global crop production by 2050, PLoS One., 2013, vol. 8, no. 6. e66428. https://doi.org/10.1371/journal.pone.0066428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reynolds, M., Foulkes, J., Furbank, R., et al., Achieving yield gains in wheat, Plant, Cell Environ., 2012, vol. 35, no, 10, pp. 1799—1823. https://doi.org/10.1111/j.1365-3040.2012.02588.x

    Article  Google Scholar 

  22. Ruane, A.C., Hudson, N.I., Asseng, S., et al., Multi-wheat-model ensemble responses to interannual climate variability, Environ. Model. Software, 2016, vol. 81, pp. 86—101. https://doi.org/10.1016/j.envsoft.2016.03.008

    Article  Google Scholar 

  23. Saghai, M.M., Biyashev, R.M., Yang, G.P., et al., Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 12, pp. 5466—5470. https://doi.org/10.1073/pnas.91.12.5466

    Article  Google Scholar 

  24. Salo, T.J., Palosuo, T., Kersebaum, K.C., et al., Comparing the yield of 11 crop simulation models in predicting yield response to nitrogen fertilization, J. Agric. Sci., 2016, vol. 154, no. 7, pp. 1218—1240. https://doi.org/10.1017/S0021859615001124

    Article  Google Scholar 

  25. Singh, A., Imtiyaz, M., Isaac, R.K., and Denis, D.M., Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India, Agric. Water Manage., 2012, vol. 104, pp. 113—120. https://doi.org/10.1016/j.agwat.2011.12.005

    Article  Google Scholar 

  26. Technow, F., Schrag, T.A., Schipprack, W., et al., Genome properties and prospects of genomic prediction of hybrid yield in a breeding program of maize, Genetics, 2014, vol. 197, no. 4, pp. 1343—1355. https://doi.org/10.1534/genetics.114.165860

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tembo, B., Sibiya, J., and Tongoona, P., Assessing genetic diversity in wheat using agro-morphological traits and the association between traits, World J. Agric. Sci., 2018, vol. 14, pp. 98—107. https://doi.org/10.5829/idosi.wjas.2018.98.107

    Article  Google Scholar 

  28. Tilman, D., Balzer, C., Hill, J., and Befort, B.L., Global food demand and the sustainable intensification of agriculture, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 50, pp. 20260—20264. https://doi.org/10.1073/pnas.1116437108

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vathana, Y., Sa, K.J., Lim, S.E., and Lee, J.K., Genetic diversity and association analyses of Chinese maize inbred lines using SSR markers, Plant Breed. Biotechnol., 2019, vol. 7, no. 3, pp. 186—199. https://doi.org/10.9787/PBB.2019.7.3.186

    Article  Google Scholar 

  30. Xu, S., Zhu, D., and Zhang, Q., Predicting hybrid yield in rice using genomic best linear unbiased prediction, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no, 34, pp. 12456—12461. https://doi.org/10.1073/pnas.1413750111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zadeh, L.A., Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets Syst., 1997, vol. 90, pp. 111—117.https://doi.org/10.1016/S0165-0114(97)00077-8

    Article  Google Scholar 

  32. Zhang, L., Rao, Z., and Ji, H., NIR hyperspectral imaging technology combined with multivariate methods to study the residues of different concentrations of omethoate on wheat grain surface, Sensors, 2019, vol. 19, no. 14, p. 3147. https://doi.org/10.3390/s19143147

    Article  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors sincerely thank Deputy of Research and Technology for Coordination of MSc thesis of first author that funded by Gonbad Kavous University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sabouri.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsabadi, E.E., Sabouri, H., Soughi, H. et al. Using of Molecular Markers in Prediction of Wheat (Triticum aestivum L.) Hybrid Grain Yield Based on Artificial Intelligence Methods and Multivariate Statistics. Russ J Genet 58, 603–611 (2022). https://doi.org/10.1134/S102279542205009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542205009X

Keywords:

Navigation