Skip to main content
Log in

Functional Significance of Mycolicibacterium smegmatis Toxin–Antitoxin Module in Resistance to Antibiotics and Oxidative Stress

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Toxin–antitoxin systems are widespread in bacteria, including pathogens such as Mycobacterium tuberculosis. The possible functions of the toxin–antitoxin systems in different groups of bacteria can be different and have been actively discussed and refined in recent years. The subject of this work is studying the function of the vapBC2 toxin–antitoxin module genes in M. smegmatis. M. smegmatis mutants with a deletion of the vapBC2 module and a strain with an additional copy of the toxin gene were obtained and studied. It was shown that expression of an additional copy of the toxin gene led to a slowdown in the growth rate, but did not completely inhibit it. These data may indicate a weak RNase activity of the toxin. It was found that the introduction of an additional copy of the toxin gene led to an increase in the sensitivity of M. smegmatis to oxidative stress. The inactivation of the vapBC2 module resulted in increased sensitivity to kanamycin. The introduction of an additional copy of the toxin gene using the pKW08-MCS-Int integrative vector resulted in increased sensitivity to kanamycin, tetracycline, and erythromycin. The determination of the exact mechanism of the vapBC2 module involvement in intrinsic drug resistance/sensitivity is the subject of our further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Le Roux, M., Culviner, P., and Liu, Y., Stress induces the transcription of toxin–antitoxin systems, but does not activate toxin, Mol. Cell, 2020, vol. 79, no. 2, pp. 1—35. https://doi.org/10.1016/j.molcel.2020.05.028

    Article  CAS  Google Scholar 

  2. Sala, A., Bordes, P., and Genevaux, P., Multiple toxin—antitoxin systems in Mycobacterium tuberculosis, Toxins, 2014, vol. 6, no. 3, pp. 1002—1020. https://doi.org/10.3390/toxins6031002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chandra, B. and Ramisetty, M., Regulation of type II toxin—antitoxin systems: the translation-responsive model, Front. Microbiol., 2020, vol. 11, no. 895, pp. 1—6. https://doi.org/10.3389/fmicb.2020.00895

    Article  Google Scholar 

  4. Fernandes-Garcia, L., Blasco, L., Lopez, M., et al., Toxin—antitoxin systems in clinical pathogens, Toxins, 2016, vol. 8, no. 227, pp. 1—23. https://doi.org/10.3390/toxins8070227

    Article  CAS  Google Scholar 

  5. Peltier, J., Hamiot, A., Garneau, J.R., et al., Type I toxin—antitoxin systems contribute to the maintenance of mobile genetic elements in Clostridioides difficile, Commun. Biol., 2020, vol. 3, no. 718, pp. 1—13. https://doi.org/10.1038/s42003-020-01448-5

    Article  CAS  Google Scholar 

  6. Wang, X., Yao, J., and Sun, Y.C., Type VII toxin/antitoxin classification system for antitoxins that enzymatically neutralize toxins, Trends Microbiol., 2021, vol. 29, no. 5, pp. 388—393. https://doi.org/10.1016/j.tim.2020.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Choi, J.C., Kim, W., Suk, S., et al., The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli, RNA Biol., 2018, vol. 15, no. 10, pp. 1319—1335. https://doi.org/10.1080/15476286.2018.1532252

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mikheecheva, N.E., Zaychikova, M.V., Melerzanov, A.V., and Danilenko, V.N., A nonsynonymous SNP catalog of Mycobacterium tuberculosis virulence genes and its use for detecting new potentially virulent sublineages, Genome Biol. Evol., 2017, vol. 9, no. 4, pp. 887—899. https://doi.org/10.1093/gbe/evx053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rownicki, M., Lasek, R., Trylska, J., and Bartosik, D., Targeting type II toxin—antitoxin systems as antibacterial strategies, Toxins, 2020, vol. 12, no. 568, pp. 1—16. https://doi.org/10.3390/toxins12090568

    Article  CAS  Google Scholar 

  10. Chan, W.T., Balsa, D., and Espinosa, M., One cannot rule them all: are bacterial toxins—antitoxins druggable?, FEMS Microbiol. Rev., 2015, vol. 39, pp. 522—540. https://doi.org/10.1093/femsre/fuv002

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gupta, A., Venkataraman, B., Vasudevan, M., and Bankar, K.G., Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress, Sci. Rep., 2017, vol. 7, no. 5868, pp. 1—14. https://doi.org/10.1038/s41598-017-06003-7

    Article  CAS  Google Scholar 

  12. Song, S. and Wood, T.K., A primary physiological role of toxin/antitoxin systems is phage inhibition, Front. Microbiol., 2020, vol. 11, no. 1895, pp. 1—7. https://doi.org/10.3389/fmicb.2020.01895

  13. Prozorov, A.A., Fedorova, I.A., Bekker, O.B., et al., The virulence factors of Mycobacterium tuberculosis: genetic control, new conceptions, Russ. J. Genet., 2014, vol. 50, no. 8, pp. 775—797. https://doi.org/10.1134/S1022795414080055

    Article  CAS  Google Scholar 

  14. Fraikin, N., Goormaghtigh, F., and Van Melderen, L., Type II toxin—antitoxin systems: evolution and revolutions, J. Bacteriol., 2020, vol. 202, no. 7, pp. 1—14. https://doi.org/10.1128/JB.00763-19

    Article  Google Scholar 

  15. Wood, T.K., Combatting bacterial persister cells, Biotechnol. Bioeng, 2016, vol. 113, no. 3, pp. 476—483. https://doi.org/10.1002/bit.25721

    Article  CAS  PubMed  Google Scholar 

  16. Jurenas, D. and Van Melderen, L., The variety in the common theme of translation inhibition by type II toxin—antitoxin systems, Front. Genet., 2020, vol. 11, no. 262, pp. 1—19. https://doi.org/10.3389/fgene.2020.00262

    Article  CAS  Google Scholar 

  17. Bordes, P., Sala, A.J., and Ayala, S., Chaperone addiction of toxin—antitoxin systems, Nat. Commun., 2016, vol. 7, no. 13339, pp. 1—12. https://doi.org/10.1038/ncomms13339

    Article  CAS  Google Scholar 

  18. Rosendahl, S., Ainelo, A., and Horak, R., The disordered C-terminus of the chaperone DnaK increases the competitive fitness of Pseudomonas putida and facilitates the toxicity of GraT, Microorganisms, 2021, vol. 9, no. 375, pp. 1—17. https://doi.org/10.3390/microorganisms9020375

    Article  CAS  Google Scholar 

  19. Yu, X., Gao, X., Zhu, K., et al., Characterization of a toxin—antitoxin system in Mycobacterium tuberculosis suggests neutralization by phosphorylation as the antitoxicity mechanism, Commun. Biol., 2020, vol. 3, no. 216, pp. 1—15. https://doi.org/10.1038/s42003-020-0941-1

    Article  CAS  Google Scholar 

  20. Bajaj, R.A., Arbing, M.A., Shin, A., et al., Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response, Acta Crystallogr. F. Struct. Biol. Commun., 2016, vol. 72, pp. 863—869. https://doi.org/10.1107/S2053230X16017957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fay, A. and Glickman, M.S., An essential nonredundant role for mycobacterial DnaK in native protein folding, PLoS Genet., 2014, vol. 10, no. 7, pp. 1—17. https://doi.org/10.1371/journal.pgen.1004516

    Article  CAS  Google Scholar 

  22. Keren, I., Minami, S., Rubin, E., and Lewis, K., Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters, mBio, 2011, vol. 2, no. 3, pp. 1—10. https://doi.org/10.1128/mBio.00100-11

    Article  CAS  Google Scholar 

  23. Inoue, H., Nojima, H., and Okayama, H., High efficiency transformation of Escherichia coli with plasmids, Gene, 1990, vol. 96, no. 1, pp. 23—28. https://doi.org/10.1016/0378-1119(90)90336-p

    Article  CAS  PubMed  Google Scholar 

  24. Snapper, S.B., Melton, R.E., Mustafa, S., et al., Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis, Mol. Microbiol., 1990, vol. 4, no. 11, pp. 1911—1919. https://doi.org/10.1111/j.1365-2958.1990.tb02040.x

    Article  CAS  PubMed  Google Scholar 

  25. Parish, T. and Brown, A.C., Mycobacteria Protocols, in Methods in Molecular Biology, New York: Humana, 2009, 2nd ed.

    Google Scholar 

  26. Williams, K.J., Joyce, G., and Robertson, B.D., Improved mycobacterial tetracycline inducible vectors, Plasmid, 2010, vol. 64, no. 2, pp. 69—73. https://doi.org/10.1016/j.plasmid.2010.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lewis, J.A. and Hatfull, G.F., Control of directionality in L5 integrase-mediated site-specific recombination, J. Mol. Biol., 2003, vol. 326, no. 3, pp. 805—821. https://doi.org/10.1016/s0022-2836(02)01475-4

    Article  CAS  PubMed  Google Scholar 

  28. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.

    Google Scholar 

  29. Haimes, J. and Kelley, M., Demonstration of a ΔΔCq Calculation Method to Compute Relative Gene Expression from qPCR Data, Lafayette: A Horizon Discovery Group Comp., 2018.

  30. Sundarsingh, J.A., Ranjitha, J., Rajan, A., and Shankar, V., Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis, J. Infect. Public Health, 2020, vol. 13, no. 9, pp. 1255—1264. https://doi.org/10.1016/j.jiph.2020.06.023

    Article  Google Scholar 

  31. Shur, K.V., Maslov, D.A., Mikheecheva, N.E., et al., The intrinsic antibiotic resistance to β-lactams, macrolides, and fluoroquinolones of mycobacteria is mediated by the whiB7 and tap genes, Russ. J. Genet., 2017, vol. 53, no. 9, pp. 1006—1015. https://doi.org/10.1134/S1022795417080087

    Article  CAS  Google Scholar 

  32. Maarsingh, J.D., Yang, S., Park, J.G., and Haydel, S.E., Comparative transcriptomics reveals PrrAB mediated control of metabolic, respiration, energy-generating, and dormancy pathways in Mycobacterium smegmatis, BMC Genomics, 2019, vol. 20, no. 942, pp. 1—16. https://doi.org/10.1186/s12864-019-6105-3

    Article  CAS  Google Scholar 

  33. Nguen, L., Antibiotic resistance mechanisms in M. tuberculosis: an update, Arch. Toxicol., 2016, vol. 90, no. 7, pp. 1585—1604. https://doi.org/10.1007/s00204-016-1727-6

    Article  CAS  Google Scholar 

  34. Ebbensgaard, A.E., Olesen, A.L., and Moller, J.F., The role of efflux pups in the transition from low-level to clinical antibiotic resistance, Antibiotics, 2020, vol. 9, no. 12, pp. 1—7. https://doi.org/10.3390/antibiotics9120855

    Article  CAS  Google Scholar 

  35. Viveiros, M., Martins, M., and Rodriges, L., Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs, Expert Rev. Anti-Infect. Ther., 2012, vol. 10, no. 9, pp. 983—998. https://doi.org/10.1586/eri.12.89

    Article  CAS  PubMed  Google Scholar 

  36. Marsova, M., Abilev, S., Poluektova, E., et al., A bioluminescent test system reveals valuable antioxidant properties of lactobacillus strains from human microbiota, World J. Microbiol. Biotechnol., 2018, vol. 34, no. 27, pp. 1—9. https://doi.org/10.1007/s11274-018-2410-2

    Article  CAS  Google Scholar 

  37. Culotta, V.C. and Daly, M.J., Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast, Antioxid. Redox Signal., 2013, vol. 19, no. 9, pp. 933—944. https://doi.org/10.1089/ars.2012.5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Imlay, J.A., Cellular defenses against superoxide and hydrogen peroxide, Annu. Rev. Biochem., 2008, vol. 77, pp. 755—776. https://doi.org/10.1146/annurev.biochem.77.061606.161055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 20-34-90124).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. I. Akimova or O. B. Bekker.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimova, N.I., Bekker, O.B. & Danilenko, V.N. Functional Significance of Mycolicibacterium smegmatis Toxin–Antitoxin Module in Resistance to Antibiotics and Oxidative Stress. Russ J Genet 58, 547–557 (2022). https://doi.org/10.1134/S1022795422050027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422050027

Keywords:

Navigation