Skip to main content
Log in

Developing the Innovative Gene Geographical and Genomic Technologies for Identification and Revealing the Personal Features by Studying the Gene Pools of the Regional Populations

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Global and Russian experience in using DNA technologies in investigation of crimes showed that the technologies are superior to other forensic identification methods in personal identification of an unknown individual. The present study considers the main current approaches that utilize genetic technologies in forensic studies, including DNA identification and DNA phenotyping. Advantages and drawbacks are discussed for several approaches. An emphasis is placed on the achievements of Russian researchers and the prospects of further molecular genetic studies in the field of forensic medicine. The main results obtained in the “DNA Identification” scientific and technical program of the Union State of Russia and Belarus are described with the focus on establishing the probable appearance, age, psychoemotional status, and ethnogeographic and population origin of an unknown person by examining his or her DNA with the use of high-throughput sequencing techniques. As a result of the program, an extended version of DNA identification kits, which have been adapted to the available and prospective resources and equipment used in forensic labs of the Union State, have been designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Jeffreys, A.J., Wilson, V., and Thein, S.L., Individual specific “fingerprints” of human DNA, Nature, 1985, vol. 316, no. 6023, pp. 76–79.

    Article  CAS  Google Scholar 

  2. Gill, P., Jeffreys, A.J., and Werrett, D.J., Forensic application of DNA “fingerprints,” Nature, 1985, vol. 318, no. 6046, pp. 577–579. https://doi.org/10.1038/318577a0

    Article  CAS  PubMed  Google Scholar 

  3. Rogaev, V.I., Syrokvasheva, E.Yu., Pimenov, M.V., and Stegnova, G.V., Human genotyposcopy: the identification of species, sex and personality by DNA genetic imprints in case of attempted murder, Sud. Med., 1992, vol. 35, no. 1, pp. 10–14.

    CAS  Google Scholar 

  4. Ivanov, P.L., Human individualization and personality identification: molecular biology in forensic science, Vestn. Russ. Akad. Nauk, 2003, vol. 73, no. 12, pp. 1085–1097.

    CAS  Google Scholar 

  5. Smirnova, S.A., Omel’yanyuk, G.G., and Storozhenko, I.V., Forensic molecular genetic analysis of objects of biological origin—a new direction of forensic activity of the Russian Ministry of Justice, Teor. Prakt. Sud. Ekspert., 2021, vol. 16, no. 1, pp. 6–18. https://doi.org/10.30764/1819-2785-2021-1-6-18

    Article  Google Scholar 

  6. National DNA database strategy board biennial report 2018—2020, UK Home Office 2020. https://assets.publishing.service.gov.uk/government/uploads/ system/uploads/attachment_data/file/913015/NDNAD_ Strategy_Board_AR_2018-2020_print.pdf. Accessed July 1, 2021.

  7. CODIS-NDIS statistics. https://www.fbi.gov/services/ laboratory/biometric-analysis/codis/ndis-statistics. Accessed July 1, 2021. 7a. Interpol, DNA, Interpol Global DNA Profiling Survey, 2019 https://www.interpol.int/How-we-work/Forensics/DNA. Accessed July 1, 2021.

  8. The unknown will be “portrayed” by an expert of the Ministry of Interior media. https://mvdmedia.ru/publications/police-of-russia/sluzhba-pol/neizvestnogo-narisuet-ekspert/. Accessed July 19, 2021. 8a. Interview of Mikhail Ignashkin, Acting Director of the Investigative and Expert Center of the Investigative Committee of the Russian Federation, to the RIA Novosti news agency. http://sledcom.ru/press/interview/item/1532317/. Accessed July 1, 2021.

  9. Grigorenko, A.P., Borinskaya, S.A., Yankovsky, N.K., and Rogaev, E.I., Achievements and peculiarities in studies of ancient DNA and DNA from complicated forensic specimens, Acta Nat., 2009, no. 3, pp. 57–69.

  10. Rogaev, E.I., Grigorenko, A.P., Moliaka, Y.K., et al., Genomic identification in the historical case of the Nicholas II royal family, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 13, pp. 5258–5263. https://doi.org/10.1073/pnas.0811190106

    Article  PubMed  PubMed Central  Google Scholar 

  11. Borinskaya, S.A., Balanovskii, O.P., Kurbatova, O.L., and Yankovskii, N.K., In pursuit of the DNA: how population genetics helps forensic science, Priroda, 2020, no. 11(1263), pp. 3–14. https://doi.org/10.7868/S0032874X20110010 11a. Resolution of the Council of Ministers of the Union State dated June 16, 2017 No. 26 “On the scientific and technical program of the Union State” development of innovative gene geographic and genomic technologies for identification of personality and individual characteristics of a person based on the study of gene pools of the regions of the Union State (“DNA-IDENTIFICATION”). https://nasb.gov.by/rus/activities/research/2016/dnk.pdf. Accessed July 1, 2021.

  12. Shapturenko, M.N., Kondratyuk, A.V., Vakula, S.I., et al., Iris color variation in Belarusian population associated with the HERC2 and OCA2 gene polymorphisms, Dokl. Nats. Akad. Nauk Belarusi, 2021, vol. 65, no. 1, pp. 59–67. https://doi.org/10.29235/1561-8323-2021-65-1-59-67

    Article  Google Scholar 

  13. Shapturenko, M.N., Vakula, S.I., Kandratsiuk, A.V., et al., HERC2 (rs12913832) and OCA2 (rs1800407) genes polymorphisms in relation to iris color variation in Belarusian population, Forensic Sci. Int. Genet., Suppl. Ser., 2019, vol. 7, no. 1, pp. 331–332. https://doi.org/10.1016/j.fsigss.2019.09.127

    Article  Google Scholar 

  14. Seredenko, M.V., Vakula, S.I., Shapturenko, M.N., et al., Prognostic capacity of the HIrisPlex genetic phenotyping system in Belarusian population, Ecol. Genet., 2021, vol. 19, no. 1, pp. 67–76. https://doi.org/10.17816/ecogen54547

    Article  Google Scholar 

  15. Balanovskii, O.P., Petrushenko, V.S., Gorin, I.O., et al., Hair and eye color prediction accuracy using genetic markers in Russian populations, Vestn. Ryazan. Gos. Med. Univ., 2019, no. 5, pp. 98–114. https://doi.org/10.24075/vrgmu.2019.069

  16. Balanovska, E., Kagazezheva, J., Agdzhoyan, A., et al., Optimizing the genetic prediction of the eye and hair color for North Eurasian populations, BMC Genomics, 2020, vol. 21, suppl. 7, p. 527. https://doi.org/10.1186/s12864-020-06923-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balanovskaya, E.V., Gorin, I.O., Koshel’, S.M., and Balanovskii, O.P., Gene geographic atlas of DNA markers controlling human eye and hair color, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1370–1388.

    Google Scholar 

  18. Zolotarenko, A.D., Chekalin, E.V., and Bruskin, S.A., Modern molecular genetic methods for age estimation in forensics, Russ. J. Genet., 2019, vol. 55, no. 12, pp. 1460–1471. https://doi.org/10.1134/S1022795419120147

    Article  CAS  Google Scholar 

  19. Kipen’, V.N., Bogdanova, M.V., Burakova, A.A., et al., Predictive capacity of CpG markers for determination of human chronological age, Mol. Prikl. Genet., 2020, vol. 28, pp. 80–90.

    Google Scholar 

  20. Kipen’, V.N., Bogdanova, M.V., and Burakova, A.A., Minimum sample size justification for prediction of human chronological age, Mol. Prikl. Genet., 2021, vol. 30, pp. 39–48. https://doi.org/10.47612/1999-9127-2021-30-39-48

    Article  Google Scholar 

  21. Lemesh, V.A., Bogdanova, M.V., Burakova, A.A., et al., Development of MS-SNUPE primers for determination of human ELOVL2, F5, and ZYG11A gene methylation status, Mol. Genet., Mikrobiol. Virusol., 2019, vol. 37, special issue, pp. 35–36.

    Article  Google Scholar 

  22. Lemesh, V.A., Kipen, V.N., Bahdanava, M.V., et al., Determination of human chronological age from biological samples based on the analysis of CpG-dinucleotides methylation, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1389–1397.

  23. Belenikin, M.S., Galahova, A.A., Balanovskaya, E.V., and Balanovsky, O.P., Reproducibility of fluorometric measurement of DNA concentration, Genetika (Moscow), 2018, vol. 54, no. 13, pp. 113–116. https://doi.org/10.1134/S0016675818130040

    Article  Google Scholar 

  24. Balanovsky, O.P., Gorin, I.O., Zapisetskaya, Yu.S., et al., Interaction of the gene pools of Russian and Finnish-speaking population of Tver oblast: analysis of 4 million SNP markers, Bull. Russ. State Med. Univ., 2020, no. 6, pp. 15–22. https://doi.org/10.24075/BRSMU.2020.072

  25. Agdzhoyan, A.T., Damba, L.D., Gur’yanov, V.M., et al., Phylogenetic analysis of the South Siberian haplogroup Q-YP1102 based on data on Y-SNP and Y-STR markers in Tuvans and surrounding populations, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1398–1407.

    Google Scholar 

  26. Parfenchik, M.S. and Kotova, S.A., The theoretical framework for the panels of DNA markers formation in the forensic determination of an individual ethnogeographic origin, Russ. J. Genet., 2021, vol. 57, no. 1, pp. 1–9. https://doi.org/10.1134/S1022795421010105

    Article  Google Scholar 

  27. Kolesnikov, N.A., Kharkov, V.N., Zarubin, A.A., and Stepanov, V.A., Characteristics of genomic distribution of runs of homozygosity in the indigenous population of Northern Eurasia, Russ. J. Genet., 2019, vol. 55, no. 10, pp. 1294–1298. https://doi.org/10.1134/S1022795419100077

    Article  CAS  Google Scholar 

  28. Kharkov, V.N., Valikhova, L.V., Yakovleva, E.L., et al., Reconstruction of the origin of the Gydan Nenets based on genetic analysis of their tribal structure using a new set of YSTR markers, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1414–1423.

    Article  Google Scholar 

  29. Khar’kov, V.N., Kotova, S.A., Kolesnikov, N.A., et al., Genetic diversity of 21 autosomic STR markers of the CODIS system in populations of Eastern Europe, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1408–1413.

    Google Scholar 

  30. Dragovich, A.Y. and Borinskaya, S.A., Genetic and genomic basis of aggressive behavior, Russ. J. Genet., 2019, vol. 55, no. 12, pp. 1445–1459. https://doi.org/10.1134/S1022795419090059

    Article  CAS  Google Scholar 

  31. Zhur, K.V., Mosse, I.B., Kil’chevskii, A.V., et al., Association of a number of neurotransmitter gene polymorphisms with psychophysiological characteristics of athletes, Mol. Prikl. Genet., 2019, vol. 26, pp. 136–144.

    Google Scholar 

  32. Babenko, A.S., Mosse, K.A., Sedlyar, N.G., et al., Development of a panel for the analysis of DNA methylation profile of target epigenetic loci associated with human psychoemotional status, Mol. Prikl. Genet., 2020, vol. 29, pp. 37–48.

    Google Scholar 

  33. Mosse, I.B., Sedlyar, N.G., Babenko, A.S., et al., Association between methylation of neuromediator brain system genes and psychoemotional human characteristics, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1424–1429.

    Google Scholar 

  34. Borinskaya, S.A., Rubanovich, A.V., Larin, A.K., et al., Epigenome-wide association Study of CpG methylation in aggressive behavior, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1454–1460.

    Google Scholar 

  35. Amel’yanovich, M.D. and Mosse, I.B., Molecular genetic markers for predicting the risk of endocrine pathology, Mol. Prikl. Genet., 2019, vol. 27, pp. 97–107.

    Google Scholar 

  36. Bulgak, A.G., Mosse, I.B., Zotova, O.V., Koroleva, T.S., Nikolaeva, N.V., and Gonchar, A.L., The role of genetic polymorphism in the development of myocardial infarction in men from the Republic of Belarus, Med.-Biol. Probl. Zhiznedeyat. (Klin. Med.), 2020, no. 2(24), pp. 92–102.

  37. Mosse, I.B, Gonchar, A.L., Kundas, L.A., et al., The role of genetic polymorphism in the development of myocardial infarction in men from the Republic of Belarus, Kardiologiya, 2021, vol. 13, no. 5 (in press).

  38. Marozik, P., Alekna, V., Rudenko, E., et al., Bone metabolism genes variation and response to bisphosphonate treatment in women with postmenopausal osteoporosis, PLoS One, 2019, vol. 14, no. 8. e0221511, pp. 1–14. https://doi.org/10.1371/journal.pone.0221511

  39. Marozik, P., Rudenka, A., Kobets, K., and Rudenka, E., Vitamin D status, bone mineral density and VDR gene polymorphism in a cohort of Belarusian postmenopausal women, Nutrients, 2021, vol. 13, no. 3, p. 837. https://doi.org/10.3390/nu13030837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rudenka, A.V., Rudenka, E.V., Samokhovec, V.Yu., et al., Vitamin D receptor gene polymorphism, bone mineral density and 25(OH)D level in women with osteoporosis, Proc. Natl. Acad. Sci. Belarus., Med. Ser., 2020, vol. 17, no. 4, pp. 480–492. https://doi.org/10.29235/1814-6023-2020-17-4-480-492

    Article  Google Scholar 

  41. Yatskiv, A.A., Sukalo, A.V., and Goncharova, R.I., Association of immune and inflammatory response gene polymorphisms beyond major histocompatibility complex with joint pathology in children from the Republic of Belarus, Med. Genet., 2020, vol. 19, no. 9(218), pp. 25–36. https://doi.org/10.25557/2073-7998.2020.09.25-36

  42. Yatskiv, A.A., Zlotnikova, M.V., Sukalo, A.V., and Goncharova, R.I., Characteristic features of the HLA class I and class II allele profiles in patients with different clinical forms of juvenile idiopathic arthritis in the Republic of Belarus, Dokl. Nats. Akad. Navuk Belarusi, 2020, vol. 64, no. 2, pp. 209–216. https://doi.org/10.29235/1561-8323-2020-64-2-209-216

    Article  Google Scholar 

  43. Bakutenko, I.Y., Hileuskaya, I.D., Nikitchenko, N.V., et al., Polymorphism of proteasomal genes can be a risk factor for systemic autoimmune diseases in children, J. Pediatr. Genet., 2021, vol. 10, no. 2, pp. 98–104. https://doi.org/10.1055/s-0040-1714697

    Article  PubMed  Google Scholar 

  44. Mikhalenko, E.P., Shchayuk, A.N., and Kil’chevskii, A.V., Signaling pathways: mechanism regulating the tumor cell proliferation and survival (review article), Mol. Prikl. Genet., 2019, vol. 26, pp.145–157.

    Google Scholar 

  45. Sivitskaya, L., Vaikhanskaya, T., Danilenko, N., et al., Splicing mutation in LAMP2 gene leading to exon skipping and cardiomyopathy development, Gene Rep., 2020, vol. 18, p. 100564. https://doi.org/10.1016/j.genrep.2019.100564

    Article  Google Scholar 

  46. Sivitskaya, L.N., Vaikhanskaya, T.G., Levdanskii, O.D., et al., Familial dilated cardiomyopathy associated with the mutation in the RBM20 splicing factor gene, Med. Genet., 2018, vol. 17, no. 11, pp. 48–52. https://doi.org/10.25557/2073-7998.2018.11.48-52

    Article  Google Scholar 

  47. Sivitskaya, L.N., Vaikhanskaya, T.G., Danilenko, N.G., et al., New mutations in the integrin-linked kinase gene in patients with arrhythmogenic cardiomyopathy, Med. Genet., 2020, vol. 19, no. 5, pp. 18–19. https://doi.org/10.25557/2073-7998.2020.05.18-19

    Article  Google Scholar 

  48. Podgorskii, V.V. and Borinskaya, S.A., Metabolomics strategies in forensic sample research, Acta Nat., 2021, vol. 13 no. 1 (in press).

  49. Tyazhelova, T.V., Kuznetsova, I.L., Andreeva, T.V., et al., Application of massive parallel sequencing technology in forensics: comparative analysis of sequencing platforms, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1430–1442.

    Google Scholar 

  50. Gaidukevich, I.V., Gor’kavaya, A.M., Grudo, A.V., et al., Development of multiplex system for determination of markers of predisposition to cardiovascular diseases, Vestn. Nats. Akad. Nauk Belarusi, Ser. Chim. Navuk, 2021, vol. 57, no. 1, pp. 48–60. https://doi.org/10.29235/1561-8331-2021-57-1-48-60

    Article  Google Scholar 

  51. Kurbatova, O.L., Udina, I.G., Gracheva, A.S., et al., Genetic demography of the population of St. Petersburg: migration processes, Russ. J. Genet., 2019, vol. 55, no. 9. pp. 1119–1129. https://doi.org/10.1134/S1022795419090084

    Article  CAS  Google Scholar 

  52. Kurbatova, O.L., Gracheva, A.S., Pobedonostseva, E.Yu., and Udina, I.G., Genetic demographic parameters of the population of Moscow: migration processes, Russ. J. Genet., 2021, vol. 57, no. 12, pp. 1443–1453.

    Google Scholar 

  53. Tsybovsky, I.S., Spivak, E.A., Kotova, S.A., et al., Territorial subdivision of the megalopolis population by the ethnic trait in relation to the problem of creating genetic databases, Minsk, Russ. J. Genet., 2021, vol. 57, no. 8, pp. 955–963. https://doi.org/10.1134/S1022795421080147

    Article  CAS  Google Scholar 

  54. Tsybovskii, I.S., Kotova, S.A., Spivak, E.A., et al., Next generation DNA technologies for new forensic solutions, Nauka Innovatsii, 2020, no. 10(212), pp. 17–21.

  55. Butler, J.M., Coble, M.D., and Vallone, P.M., STRs vs. SNPs: thoughts on the future of forensic DNA testing, Forensic Sci. Med. Pathol., 2007, vol. 3, no. 3, pp. 200–205. https://doi.org/10.1007/s12024-007-0018-1

    Article  CAS  PubMed  Google Scholar 

  56. Parson, W., Age estimation with DNA: from forensic DNA fingerprinting to forensic (EPI) genomics: a mini-review, Gerontology, 2018, vol. 64, no. 4, pp. 326–332. https://doi.org/10.1159/000486239

    Article  CAS  PubMed  Google Scholar 

  57. Vidaki, A. and Kayser, M., Recent progress, methods and perspectives in forensic epigenetics, Forensic Sci. Int. Genet., 2018, vol. 37, pp. 180–195. https://doi.org/10.1016/j.fsigen.2018.08.008

    Article  CAS  PubMed  Google Scholar 

  58. McCartney, D.L., Hillary, R.F., Stevenson, A.J., et al., Epigenetic prediction of complex traits and death, Genome Biol., 2018, vol. 19, no. 1, p. 136. https://doi.org/10.1186/s13059-018-1514-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present study was performed within the framework of the scientific and technical program of the Union State “Development of Innovative Gene Geographical and Genomic Technologies for Identifying and Revealing the Personal Features by Studying the Gene Pools of the Regional Populations of the Union State” (“DNA Identification”) with the financial support of the National Academy of Sciences of Belarus (state contract no. 1 DNA-2017/2017-28-068 of August 30, 2017) and Ministry of Science and Higher Education of The Russian Federation (state contract no. 011-17 of September 26, 2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kilchevsky or N. K. Yankovsky.

Ethics declarations

The authors declare no conflict of interest.

The present study contains no data on research involving animals as the objects of the study.

The present study contains no data on research involving humans as the objects of the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilchevsky, A.V., Yankovsky, N.K. Developing the Innovative Gene Geographical and Genomic Technologies for Identification and Revealing the Personal Features by Studying the Gene Pools of the Regional Populations. Russ J Genet 57, 1361–1369 (2021). https://doi.org/10.1134/S1022795421120073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421120073

Keywords:

Navigation