Skip to main content
Log in

The Correlation of MTHFR SNPs, Homocysteine, and Conventional Risk Predictors with Coronary Artery Disease

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Arterial thromboembolic disease affects coronary vasculature and has an exhaustive list of etiologies. The aim of the present study was to investigate the effects of genetic variants in homocysteine pathway genes, homocysteine levels, and other modifiable and non-modifiable conventionally allotted risk factors for coronary artery disease. Study was retrospective case control study, comprised 404 participants (controls, n = 179, ischemic heart disease (IHD) patients, n = 89, and myocardial infarction (MI) cases, n = 136, respectively). Single nucleotide polymorphisms (SNPs); rs1801133, rs1801131 in methylenetetrahydrofolate reductase ‘MTHFR’ gene, rs1805087 in methyl tetrahydrofolate homocysteine methyltransferase ‘MTR’ gene, and rs662 in paroxanse1 ‘PON1’ gene, rs4646994, angiotensin converting enzyme ‘ACE’ insertion/deletion (I/D) polymorphism were resolved employing conventional, and by tetra primer allele refractory mutation system polymerase chain reaction (PCR). ANOVA association testing revealed that homocysteine, cholesterol, creatinine, triglyceride levels, age, family history of CAD, and polymorphisms in MTHFR and PON1 related to coronary artery disease. The post HOC analysis also maintained significance differences in the control, ischemic heart disease and case groups respectively. The regression analysis failed to maintain statistical significance for creatinine, triglycerides, age, and rs662 PON1 polymorphism, whereby, serum homocysteine, cholesterol, family history, and rs1801133/rs1801131 MTHFR SNPs maintained statistical significance. The results from the present study provide hint into interlaced nature of traditional and novel risk factors in the causation of arterial disease and an insight into their shared detrimental effects in affecting the coronary vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Guven, M., Ismailoglu, Z., Batar, B., et al., The effect of genetic polymorphisms of TLR2 and TLR4 in Turkish patients with coronary artery disease, Gene, 2015, vol. 558, no. 1, pp. 99–102.

    Article  CAS  PubMed  Google Scholar 

  2. Masud, R. and Qureshi, I.Z., Tetra primer ARMS-PCR relates folate/homocysteine pathway genes and ACE gene polymorphism with coronary artery disease, Mol. Cell. Biochem., 2011, vol. 355, nos. 1—2, pp. 289–297.

    Article  CAS  PubMed  Google Scholar 

  3. Shabana, N.A., Ashiq, S., Ijaz, A., et al., Genetic risk score (GRS) constructed from polymorphisms in the PON1, IL-6, ITGB3, and ALDH2 genes is associated with the risk of coronary artery disease in Pakistani subjects, Lipids Health Dis., 2018, vol. 17, no. 1, p. 224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan, M.A., Hashim, M.J., Mustafa, H., et al., Global epidemiology of ischemic heart disease: results from the global burden of disease study, Cureus, 2020, vol. 12, no. 7. e9349

    PubMed  PubMed Central  Google Scholar 

  5. Li, Y., Yan, H., Guo, J., et al., Down-regulated RGS5 by genetic variants impairs endothelial cell function and contributes to coronary artery disease, Cardiovasc. Res., 2019.

  6. Ma, L., Chandel, N., Ermel, R., et al., Multiple independent mechanisms link gene polymorphisms in the region of ZEB2 with risk of coronary artery disease, Atherosclerosis, 2020, vol. 311, pp. 20–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Piatek, J., Kedziora, A., Kielbasa, R., et al., How to predict the risk of postoperative complications after coronary artery bypass grafting in patients under 50 and over 80 years old: a retrospective cross-sectional study, Kardiol. Pol., 2017, vol. 75, no. 10, pp. 975–982.

    Article  PubMed  Google Scholar 

  8. Tay, S.Y., Chang, P.Y., Lao, W.T., et al., The proper use of coronary calcium score and coronary computed tomography angiography for screening asymptomatic patients with cardiovascular risk factors, Sci. Rep., 2017, vol. 7, no. 1, p. 17653.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Charniot, J.C., Khani-Bittar, R., Albertini, J.P., et al., Interpretation of lipoprotein-associated phospholipase A2 levels is influenced by cardiac disease, comorbidities, extension of atherosclerosis and treatments, Int. J. Cardiol., 2013, vol. 168, no. 1, pp. 132–138.

    Article  CAS  PubMed  Google Scholar 

  10. Morito, N., Inoue, Y., Urata, M., et al., Increased carotid artery plaque score is an independent predictor of the presence and severity of coronary artery disease, J. Cardiol., 2008, vol. 51, no. 1, pp. 25–32.

    Article  PubMed  Google Scholar 

  11. Conkbayir, C., Fahrioglu Yamaci, R., Gencer, P., et al., Impact of genetic defects on coronary atherosclerosis among Turkish Cypriots, Heart Surg Forum, 2017, vol. 20, no. 5, pp. E223–E229.

    Article  PubMed  Google Scholar 

  12. Hu, R., Ma, C.S., Nie, S.P., et al., Effect of metabolic syndrome on prognosis and clinical characteristics of revascularization in patients with coronary artery disease, Chin. Med. J., 2006, vol. 119, no. 22, pp. 1871–1876.

    Article  PubMed  Google Scholar 

  13. Tasic, I., Kostic, S., Stojanovic, N.M., et al., Significance of asymptomatic hyperuricemia in patients after coronary events, Scand. J. Clin. Lab. Invest., 2018, vol. 78, no. 4, pp. 312–317.

    Article  CAS  PubMed  Google Scholar 

  14. Borowczyk, K., Piechocka, J., Glowacki, R., et al., Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial, J. Int. Med., 2019, vol. 285, no. 2, pp. 232–244.

    Article  CAS  Google Scholar 

  15. Lee, T.H., Cheng, M.L., Shiao, M.S., and Lin, C.N., Metabolomics study in severe extracranial carotid artery stenosis, BMC Neurol., 2019, vol. 19, no. 1, p. 138.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xie, J., Qi, J., Mao, H., et al., Coronary plaque tissue characterization in patients with premature coronary artery disease, Int. J. Cardiovasc. Imaging, 2020, vol. 36, no. 6, pp. 1003–1011.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bosevski, M., Zlatanovikj, N., Petkoska, D., et al., Plasma homocysteine in patients with coronary and carotid artery disease: a case control study, Prilozi—Maked. Akad. Nauk. Umet., Odd. Biol. Med. Nauki, 2020, vol. 41, no. 1, pp. 15–22.

    Google Scholar 

  18. Falchi, A., Giovannoni, L., Piras, I.S., et al., Prevalence of genetic risk factors for coronary artery disease in Corsica Island (France), Exp. Mol. Pathol., 2005, vol. 79, no. 3, pp. 210–213.

    Article  CAS  PubMed  Google Scholar 

  19. Kerkeni, M., Addad, F., Chauffert, M., et al., Hyperhomocysteinaemia, methylenetetrahydrofolate reductase polymorphism and risk of coronary artery disease, Ann. Clin. Biochem., 2006, vol. 43, part 3, pp. 200–206.

    Article  CAS  PubMed  Google Scholar 

  20. Zak, I., Niemiec, P., Sarecka, B., et al., Carrier-state of D allele in ACE gene insertion/deletion polymorphism is associated with coronary artery disease, in contrast to the C677→ T transition in the MTHFR gene, Acta Biochim. Pol., 2003, vol. 50, no. 2, pp. 527–534.

    Article  CAS  PubMed  Google Scholar 

  21. Vinukonda, G., Shaik Mohammad, N., Md Nurul Jain, J., et al., Genetic and environmental influences on total plasma homocysteine and coronary artery disease (CAD) risk among South Indians, Clin. Chim. Acta, 2009, vol. 405, nos. 1–2, pp. 127–131.

    Article  CAS  PubMed  Google Scholar 

  22. Masud, R. and Baqai, H.Z., The communal relation of MTHFR, MTR, ACE gene polymorphisms and hyperhomocysteinemia as conceivable risk of coronary artery disease, Appl. Physiol. Nutr. Metab., 2017, vol. 42, no. 10, pp. 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  23. Bansal, S.K. and Yadav, R., A study of the extended lipid profile including oxidized LDL, small dense LDL, lipoprotein (a) and apolipoproteins in the assessment of cardiovascular risk in hypothyroid patients, J. Clin. Diagn. Res., 2016, vol. 10, no. 6, pp. BC04–BC08.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Qunibi, W.Y., Dyslipidemia in dialysis patients, Semin. Dial., 2015, vol. 28, no. 4, pp. 345—353.

    Article  PubMed  Google Scholar 

  25. Abchee, A., Puzantian, H., Azar, S.T., et al., Predictors of coronary artery disease in the Lebanese population, Thromb. Res., 2006, vol. 117, no. 6, pp. 631–637.

    Article  CAS  PubMed  Google Scholar 

  26. Li, W., Li, X., Wang, M., et al., Association between red cell distribution width and the risk of heart events in patients with coronary artery disease, Exp. Ther. Med., 2015, vol. 9, no. 4, pp. 1508–1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mann, J.F., Gerstein, H.C., Pogue, J., et al., Cardiovascular risk in patients with early renal insufficiency: implications for the use of ACE inhibitors, Am. J. Cardiovasc. Drugs, 2002, vol. 2, no. 3, pp. 157–162.

    Article  CAS  PubMed  Google Scholar 

  28. Huang, C.L., Wu, Y.W., Wu, C.C., et al., Association between serum adipocyte fatty-acid binding protein concentrations, left ventricular function and myocardial perfusion abnormalities in patients with coronary artery disease, Cardiovasc. Diabetol., 2013, vol. 12, p. 105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sahin, I., Karabulut, A., Gungor, B., et al., Correlation between the serum alkaline phosphatase level and the severity of coronary artery disease, Coron. Artery Dis., 2014, vol. 25, no. 4, pp. 349–352.

    Article  PubMed  Google Scholar 

  30. Bagheri, B., Zargari, M., Meshkini, F., et al., Uric acid and coronary artery disease, two sides of a single coin: a determinant of antioxidant system or a factor in metabolic syndrome, J. Clin. Diagn. Res., 2016, vol. 10, no. 2, pp. OC27–OC31.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Manochehri, M. and Moghadam, A.J., Studying the relation of postprandial triglyceride with coronary artery disease (CAD), Med. Arch., 2016, vol. 70, no. 4, pp. 261–264.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shao, C., Wang, J., Tian, J., and Tang, Y.D., Coronary artery disease: from mechanism to clinical practice, Adv. Exp. Med. Biol., 2020, vol. 1177, pp. 1–36.

    Article  CAS  PubMed  Google Scholar 

  33. Brown, J.C., Gerhardt, T.E., Kwon, E., Risk factors for coronary artery disease, in Stat Pearls Treasure Island (FL), 2020.

  34. Krittanawong, C., Kumar, A., Wang, Z., Narasimhan, B., et al., Coronary artery disease in the young in the US population-based cohort, Am. J. Cardiovasc. Dis., 2020, vol. 10, no. 3, pp. 189–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng, M., Cheng, M., and Wei, Q., Association of myeloperoxidase, homocysteine and high-sensitivity C-reactive protein with the severity of coronary artery disease and their diagnostic and prognostic value, Exp. Ther. Med., 2020, vol. 20, no. 2, pp. 1532–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rallidis, L.S., Kosmas, N., Rallidi, T., et al., Homocysteine is an independent predictor of long-term cardiac mortality in patients with stable coronary artery disease in the era of statins, Coron. Artery Dis., 2020, vol. 31, no. 2, pp. 152–156.

    Article  PubMed  Google Scholar 

  37. Nakai, K., Habano, W., Fujita, T., et al., Highly multiplexed genotyping of coronary artery disease-associated SNPs using MALDI-TOF mass spectrometry, Hum. Mutat., 2020, vol. 20, no. 2, pp. 133–138.

    Article  Google Scholar 

  38. Ghazouani, L., Abboud, N., Mtiraoui, N., et al., Homocysteine and methylenetetrahydrofolate reductase C677T and A1298C polymorphisms in Tunisian patients with severe coronary artery disease, J. Thromb. Thrombolysis, 2009, vol. 27, no. 2, pp. 191–197.

    Article  CAS  PubMed  Google Scholar 

  39. Bickel, C., Schnabel, R.B., Zengin, E., et al., Homocysteine concentration in coronary artery disease: influence of three common single nucleotide polymorphisms, Nutr. Metab. Cardiovasc. Dis., 2017, vol. 27, no. 2, pp. 168–175.

    Article  CAS  PubMed  Google Scholar 

  40. Long, Y., Zhao, X.T., Liu, C., et al., A case-control study of the association of the polymorphisms of MTHFR and APOE with risk factors and the severity of coronary artery disease, Cardiology, 2019, vol. 142, no. 3, pp. 149–157.

    Article  PubMed  Google Scholar 

  41. Raina, J.K., Sharma, M., Panjaliya, R.K., et al., Association of ESR1 (rs2234693 and rs9340799), CETP (rs708272), MTHFR (rs1801133 and rs2274976) and MS (rs185087) polymorphisms with coronary artery disease (CAD), BMC Cardiovasc. Disord., 2020, vol. 20, no. 1, p. 340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saad Shaukat, M.H., Toledo-Garcia, A., and Torosoff, M., Recurrent myocardial infarction despite normal C-reactive protein in a patient with Behcet’s disease and compound heterozygous methylenetetrahydrofolate reductase (MTHFR) mutations (C677T and A1298C), Cureus, 2019, vol. 11, no. 8, p. e5344.

    PubMed  PubMed Central  Google Scholar 

  43. Vijaya Lakshmi, S.V., Naushad, S.M., Rupasree, Y., et al., Interactions of 5'-UTR thymidylate synthase polymorphism with 677C → T methylene tetrahydrofolate reductase and 66A → G methyltetrahydrofolate homocysteine methyl-transferase reductase polymorphisms determine susceptibility to coronary artery disease, J. Atheroscler. Thromb., 2011, vol. 18, no. 1, pp. 56—64.

    Article  PubMed  Google Scholar 

  44. Hassan, M.A., Al-Attas, O.S., Hussain, T., et al., The Q192R polymorphism of the paraoxonase 1 gene is a risk factor for coronary artery disease in Saudi subjects, Mol. Cell Biochem., 2013, vol. 380, nos. 1–2, pp. 121–128.

    Article  CAS  PubMed  Google Scholar 

  45. Singh, P.R. and Lele, S.S., Folate gene polymorphisms MTR A2756G, MTRR A66G, and BHMT G742A and risk for coronary artery disease: a meta-analysis, Genet. Test Mol. Biomarkers, 2012, vol. 16, no. 6, pp. 471–475.

    Article  CAS  PubMed  Google Scholar 

  46. Huo, X., Guo, Y., Zhang, Y., et al., Paraoxonase 1 gene (Q192R) polymorphism confers susceptibility to coronary artery disease in type 2 diabetes patients: evidence from case—control studies, Drug Discov. Ther., 2019, vol. 13, no. 2, pp. 80–88.

    Article  CAS  PubMed  Google Scholar 

  47. Zeng, Q. and Zeng, J., A meta-analysis on relationship between paraoxonase 1 polymorphisms and atherosclerotic cardiovascular diseases, Life Sci., 2019, vol. 232, p. 116646.

    Article  CAS  PubMed  Google Scholar 

  48. Szperl, M., Dzielinska, Z., Roszczynko, M., et al., Genetic variants in hypertensive patients with coronary artery disease and coexisting atheromatous renal artery stenosis, Med. Sci. Monit., 2008, vol. 14, no. 12, pp. CR611–CR616.

    PubMed  Google Scholar 

  49. Agirbasli, M., Guney, A.I., Ozturhan, H.S., et al., Multifactor dimensionality reduction analysis of MTHFR, PAI-1, ACE, PON1, and eNOS gene polymorphisms in patients with early onset coronary artery disease, Eur. J. Cardiovasc. Prev. Rehabil., 2011, vol. 18, no. 6, pp. 803–809.

    Article  CAS  PubMed  Google Scholar 

  50. Tripathi, R., Tewari, S., Singh, P.K., and Agarwal, S., Association of homocysteine and methylene tetrahydrofolate reductase (MTHFR C677T) gene polymorphism with coronary artery disease (CAD) in the population of North India, Genet. Mol. Biol., 2010, vol. 33, no. 2, pp. 224–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rallidis, L.S., Gialeraki, A., Triantafyllis, A.S., et al., Characteristics and long-term prognosis of patients </=35 years of age with ST segment elevation myocardial infarction and normal or near normal coronary arteries, Am. J. Cardiol., 2017, vol. 120, no. 5, pp. 740–746.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof Dr I.J, Kullo, Dr Keyue Ding, Dr Wasim, Dr Asad, and Dr Tariq for samples, for valuable comments, and help in manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masud.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interests.

Statement of compliance with standards of research involving humans as subjects. The Pakistan Medical Research Council, Islamabad and Institutional Review Board CMH Kharian Medical College approved the study. All the participants provided written informed consent for use of data and samples for the current research project. The institutional ethical standards were rigorously exercised and all experiments were carried out under the Helsinki Declaration guidelines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masud, R., Khan, A.U., Baqai, H.Z. et al. The Correlation of MTHFR SNPs, Homocysteine, and Conventional Risk Predictors with Coronary Artery Disease. Russ J Genet 57, 1328–1336 (2021). https://doi.org/10.1134/S1022795421110077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421110077

Keywords:

Navigation