Skip to main content
Log in

The Complete Mitochondrial Genome Comparison between Pelecanus occidentalis and Pelecanus crispus

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Until now, only the complete mitochondrial genome (mtDNA) of Pelecanus occidentalis and Pelecanus crispus have been sequenced. In order to explore the characteristics of mtDNA of the two Pelecanidae species and analyze their phylogenetic relationship, the two mtDNA were compared with Ciconia ciconia as reference. The mtDNA of the P. occidentalis and P. crispus were determined with the size of 17, 286 bp and 16, 131 bp, respectively. Both sequences contain 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. Gene of P. occidentalis and P. crispus are in the same arrangement and show positive AT skew and negative GC skew. There are some differences in intervals and overlap regions between the two species. The phylogenetic analysis show that the P. occidentalis and P. crispus grouped one branch and the relationship of Pelecanidae birds, Ciconiiformes birds and Spheniscifomes birds is relative. The study provid more genetic information for P. occidentalis and P. crispus, which is beneficial to the protection of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Dyall, S.D., Brown, M.T., Johnson, P.J., Ancient invasions: from endosymbionts to organelles, Science (New York), 2004, vol. 304, no. 5668, pp. 253—257.

    Article  CAS  Google Scholar 

  2. Ye, N., Wang, X.L., Li, J., et al., Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis, Peer J., 2017, vol. 5. e3148.

    Article  Google Scholar 

  3. Greenjohn, C. and Reed, D.R., Mitochondria and apoptosis, Science, 1998, vol. 281, no. 5381, pp. 1309—1312.

    Article  Google Scholar 

  4. Cao, X.T. and Qin, Y., Mitochondrial translation factors reflect coordination between organelles and cytoplasmic translation via mTOR signaling: implication in disease, Free Radical Biol. Med., 2016, vol. 100, pp. 231—237.

    Article  CAS  Google Scholar 

  5. Andersson, S.G.E., Zomorodipour, A., Andersson, J.O., et al., The genome sequence of Rickettsia prowazekii and the origin of mitochondria, Nature, 1998, vol. 396, no. 6707, pp. 133—140.

    Article  CAS  Google Scholar 

  6. Mu, C.Y., Chen, Y., Wang, B., et al., Completely sequencing and gene organization of the Anser cygnoides mitochondrial genome, J. Agric. Biotechnol., 2014, vol. 22, no.12, pp. 1482—1493.

    CAS  Google Scholar 

  7. Huang, Z.H., and Liu, N.F., Advances in mitochondrial genome size variation in animals, Life Sci. R., 2010, vol. 14, no. 2, pp. 166—171.

    CAS  Google Scholar 

  8. Boore, J.L., Animal mitochondrial genomes, Nucleic Acids Res., 1999, vol. 27, no. 8, pp. 1767—1780.

    Article  CAS  Google Scholar 

  9. Boore, J.L., Medina, M., and Rosenberg, L.A., Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod Graptacme eborea and the bivalve Mytilus edulis, Mol. Biol. Evol., 2004, vol. 21, no. 8, pp. 1492—1503.

    Article  CAS  Google Scholar 

  10. Kumazawa, Y., Ota, H., Nishida, M., et al., Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster, Mol. Biol. Evol., 1996, vol. 13, no. 9, pp. 1242—1254.

    Article  CAS  Google Scholar 

  11. Helfenbein, K.G., Fourcade, H.M., Vanjani, R.G., et al., The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 29, pp. 10639—10643.

    Article  CAS  Google Scholar 

  12. Qiu, Y., Song, D.X., Zhou, K.Y., et al., The mitochondrial sequences of Heptathela hangzhouensis and Ornithoctonus huwena reveal unique gene arrangements and atypical tRNAs, J. Mol. Evol., 2005, vol. 60, no. 1, pp. 57—71.

    Article  CAS  Google Scholar 

  13. Haring, E., Kruckenhauser, L., Gamauf, A., et al., The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors, Mol. Biol. Evol., 2001, vol. 18, no. 10, pp. 1892—1904.

    Article  CAS  Google Scholar 

  14. Johnsenl, A., Kearns, A.M., Omland, K.E., et al., Sequencing of the complete mitochondrial genome of the common raven Corvus corax (Aves: Corvidae) confirms mitogenome-wide deep lineages and a paraphyletic relationship with the Chihuahuan raven C. cryptoleucus, PLoS One, 2017, vol. 12, no. 10. e0187316.

    Article  Google Scholar 

  15. http://www.wlf.louisiana.gov/oilspill/actions. Accessed November 19, 2010.

  16. Nesbitt, S.A., Williams, L.E., McNease, L., et al., Brown pelican restocking efforts in Louisiana, Wilson Bull., 1978, vol. 90, no. 3, pp. 443—445.

    Google Scholar 

  17. Blus, L., Cromartie, E., McNease, L., and Joanen, T., Brown pelican: population status, reproductive success, and organochlorine residues in Louisiana, 1971—1976, Bull. Environ. Contam. Toxicol., 1979, vol. 22, pp. 128—135.

    Article  CAS  Google Scholar 

  18. Shields, M., Pelecanus occidentalis, no. 609 in The Birds of North America Online, Poole, A., Ed., Ithaca: Cornell Lab. Ornithol. http://bna.birds.cornell.edu/bna/species/609. Accessed June 15, 2012.

  19. Vander, P.S.S., Anderson, D.W., Jodice, P.G.R., et al., East versus West: organic contaminant differences in Pelecanus occidentalis eggs from South Carolina, USA and the Gulf of California, Mexico, Sci. Total Environ., 2012, vol. 438, pp. 527—532.

    Article  Google Scholar 

  20. Shi, H.Q., Liu, N.F., Cao, L., et al., Status of the East Asian population of the dalmatian pelican Pelecanus crispus: the need for urgent conservation action, Bird Conserv. Int., 2008, vol. 18, pp. 181—193.

    Article  Google Scholar 

  21. Huang, T., Wang, Y.H., Zhou, L.B., et al., Complete mitochondrial genome of Pelecanus crispus and its phylogeny, Mitochondrial DNA, Part B, 2019, vol. 4, no. 2, pp. 3075—3076.

    Article  Google Scholar 

  22. IUCN, The IUCN Red List of Threatened Species, 2017, vol. 3. http://www.iucnredlist.org.

  23. Huang, T., Peng, J., Zhao, Y.L., et al., The complete mitochondrial genome of Pelecanus occidentalis (Pelecaniformes: Pelecanidae) and its phylogenetic analysis, Mitochondrial DNA, Part B, 2018, vol. 3, no. 2, pp. 782—783.

    Article  Google Scholar 

  24. Gibb, G.C., Kennedy, M., and Penny, D., Beyond phylogeny: pelecaniform and ciconiiform birds, and long-term niche stability, Mol. Phylogenet. Evol., 2013, vol. 68, no. 2, pp. 229—238.

    Article  Google Scholar 

  25. Zhang, L.Q., Wang, L., Gowda, V., et al., The mitochondrial genome of the Cinnamon Bittern, Ixobrychus cinnamomeus (Pelecaniformes: Ardeidae): sequence, structure and phylogenetic analysis, Mol. Biol. Rep., 2012, vol. 39, no. 8, pp. 8315—8326.

    Article  CAS  Google Scholar 

  26. Chen, C.J., Chen, H., Zhang, Y., et al., TBtools: an integrative toolkit developed for interactive analyses of big biological data, Mol. Plant, 2020, vol. 13, no. 8, pp. 1194—1202.

    Article  CAS  Google Scholar 

  27. Li, C.Y., Zhao, Y.L., Xu, Z.G., et al., Initial characterization of the chloroplast genome of Vicia sepium, an important wild resource plant, and related inferences about its evolution, Front. Genet., 2020, vol. 11, p. 73.

    Article  CAS  Google Scholar 

  28. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874.

    Article  CAS  Google Scholar 

  29. Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, no. 11, pp. 1451—1452.

    Article  CAS  Google Scholar 

  30. Zhang, S.X., Yang, L., and Yang, J.X., On the modern avian taxonomy and phylogenetics, Zool. Syst., 2004, vol. 29, no. 4, pp. 675—682.

    Google Scholar 

  31. Zheng, X.N., Zheng, N., Zhang, Y., et al., New progress avian molecular phylogenetics, J. Beijing Norm. Univ., Nat. Sci., 2011, vol. 47, no. 1, pp. 54—58.

    Google Scholar 

  32. Lee, W.J., Conroy, J., Howell, W.H., et al., Structure and evolution of teleost mitochondrial regions, J. Mol. Evol., 1995, vol. 41, no. 1, pp. 54—66.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (U20A20118), Major Science and Technology Program of Hunan Province (2017NK1014), Key Technology R&D Program of Hunan Province (2016TP2007; 2016TP1014; 2017TP2014) and Natural Science Foundation of Hunan Province (2019JJ40012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhenggang.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest. Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

APPENDIX

APPENDIX

Table S1. Summary of Pelecanus occidentalis mitogenome
Table S2. Summary of Pelecanus crispus mitogenome
Table S3. Summary of Ciconia ciconia mitogenome

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuangye, W., Yunlin, Z., Zhenggang, X. et al. The Complete Mitochondrial Genome Comparison between Pelecanus occidentalis and Pelecanus crispus. Russ J Genet 57, 1073–1081 (2021). https://doi.org/10.1134/S102279542109012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542109012X

Keywords:

Navigation