Skip to main content
Log in

Features of Expression of Foreign Genes in Complex Insertions in Transgenic Tobacco Plants with a Mosaic Pattern of nptII Gene Expression

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The features of a mosaic pattern of the expression of the nptII selective gene, which provides plant resistance to kanamycin antibiotic, and the target gene of Serratia marcescens secretory endonuclease under control of the bidirectional MAS promoter of the mannopine synthase gene of Agrobacterium tumefaciens Ti plasmid in epiallelic lines of transgenic tobacco plants (Nu5 and Nu6) were studied. Both genes are part of a complex insertion represented by two full-size T-DNA copies and one truncated copy located between them in the reverse orientation. Transgenic tobacco lines contrastingly differ in the phenotypic expression of the nptII gene (low frequency of mosaics in the Nu5 line and high in Nu6). It was established that a decrease in the level of expression of the selective gene occurs when transgenic plants pass from hemi- to homozygous state, and it is most pronounced for the Nu6 epiallele. It was demonstrated that synthesis of aberrant sense and antisense transcripts in the region of a truncated T-DNA copy occurs in the transgenic lines. Namely these transcripts can act as triggers and trigger the inactivation of the selective nptII gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hobbs, S.L.A., Kpodar, P., and DeLong, C.M.O., The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants, Plant Mol. Biol., 1990, vol. 15, pp. 851—864.

    Article  CAS  Google Scholar 

  2. Peach, C. and Velten, J., Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters, Plant Mol. Biol., 1991, vol. 17, pp. 49—60.

    Article  CAS  Google Scholar 

  3. Kim, S.I. and Veena Gelvin, S.B., Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions, Plant J., 2007, vol. 51, no. 5, pp. 779—791. https://doi.org/10.1111/j.1365-313X.2007.03183.x

    Article  CAS  PubMed  Google Scholar 

  4. Iglesias, V.A., Moscone, E.A., Papp, I., et al., Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco, Plant Cell, 1997, vol. 9, pp. 1251—1264.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Domínguez, A., Fagoaga, C., Navarro, L., et al., Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes, Mol. Genet. Genomics, 2002, vol. 267, no. 4, pp. 544—556. https://doi.org/10.1007/s00438-002-0688-z

    Article  CAS  PubMed  Google Scholar 

  6. Neuhuber, F., Park, Y.D., Matzke, A.J., and Matzke, M.A., Susceptibility of transgene loci to homology-dependent gene silencing, Mol. Gen. Genet., 1994, vol. 244, pp. 230—241.

    Article  CAS  Google Scholar 

  7. Loginova, D.B., Shumnyi, V.K., and Deineko, E.V., Features of T-DNA insert organization in transgenic tobacco-plants, line Nu21, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2010, vol. 14, no. 1, pp. 659—665.

    Google Scholar 

  8. Marenkova, T.V. and Deineko, E.V., Transcriptional gene silencing in plants, Russ. J. Genet. 2010, vol. 46, no. 5, pp. 511—520. https://doi.org/10.1134/S1022795410050017

    Article  CAS  Google Scholar 

  9. Csorba, T., Pantaleo, V., and Burgyán, J., RNA silencing: an antiviral mechanism, Adv. Virus Res., 2009, vol. 75, pp. 35—71. https://doi.org/10.1016/S0065-3527(09)07502-2

    Article  CAS  PubMed  Google Scholar 

  10. Morino, K., Olsen, O., and Shimamoto, K., Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene, Plant J., 1999, vol. 17, no. 3, pp. 275—285.

    Article  CAS  Google Scholar 

  11. Yan, H., Chretien, R., Ye, J., and Rommens, C.M., New construct approaches for efficient gene silencing in plants, Plant Physiol., 2006, vol. 141, no. 4, pp. 1508—1518. https://doi.org/10.1104/pp.106.082271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nicholson, S.J. and Srivastava, V., Transgene constructs lacking transcription termination signal induce efficient silencing of endogenous targets in Arabidopsis, Mol. Genet. Genomics, 2009, vol. 282, no. 3, pp. 319—328. https://doi.org/10.1007/s00438-009-0467-1

    Article  CAS  PubMed  Google Scholar 

  13. Čermák, V. and Fischer, L., Pervasive read-through transcription of T-DNAs is frequent in tobacco BY-2 cells and can effectively induce silencing, BMC Plant Biol., 2018, vol. 18, no. 1, p. 252. https://doi.org/10.1186/s12870-018-1482-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marenkova, T.V., Loginova, D.B., and Deineko, E.V., Mosaic patterns of transgene expression in plants, Russ. J. Genet., 2012, vol. 48, no. 3, pp. 249—260. https://doi.org/10.1134/S1022795412030088

    Article  CAS  Google Scholar 

  15. Marenkova (Novoselia), T.V., Deineko, E.V., and Shumnyi, V.K., Mosaic expression pattern of the nptII gene in transgenic tobacco plants Nu21, Russ. J. Genet., 2007, vol. 43, no. 7, pp. 780—790.

    Article  Google Scholar 

  16. Marenkova, T.V. and Deineko, E.V., Hybridological analysis of inheritance of mosaic nptII gene expression in transgenic tobacco plants, Russ. J. Genet., 2016, vol. 52, no. 6, pp. 557—564. https://doi.org/10.1134/S1022795416060089

    Article  CAS  Google Scholar 

  17. Loginova, D.B., Men’shanov, P.N., and Deineko, E.V., Analysis of mosaic expression of the nptII gene in transgenic tobacco plant lines contrasting in mosaicism, Russ. J. Genet., 2012, vol. 48, no. 11, pp. 1097—1102. https://doi.org/10.1134/S1022795412110051

    Article  CAS  Google Scholar 

  18. Marenkova, T.V., Sidorchuk, Y.V., Kusnetsov, V.V., et al., Effect of changes in genome ploidy on the mosaic character of nptII gene expression in epialleles of the transgenic tobacco line Nu21, Russ. J. Genet., 2020, vol. 56, no. 2, pp. 204—212. https://doi.org/10.1134/S1022795420020088

    Article  CAS  Google Scholar 

  19. Bubner, B., Gase, K., and Baldwin, I.T., Two-fold differences are the detection limit for determining transgene copy numbers in plants by real-time PCR, BMC Biotechnol., 2004, vol. 4: 14. https://doi.org/10.1186/1472-6750-4-14

  20. Glantz, S.A., Primer of Biostatistics, New York: McGraw—Hill, 1997, 4th ed.

    Google Scholar 

  21. Nocarova, E., Opatrny, Z., and Fischer, L., Successive silencing of tandem reporter genes in potato (Solanum tuberosum) over 5 years of vegetative propagation, Ann. Bot., 2010, vol. 106, no. 4, pp. 565—572. https://doi.org/10.1093/aob/mcq153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vain, P., James, V.A., Worland, B., and Snape, J.W., Transgene behavior across two generations in a large random population of transgenic rice plants produced by particle bombardment, Theor. Appl. Genet., 2002, vol. 105, pp. 878—889.

    Article  CAS  Google Scholar 

  23. Gong, Z., Morales-Ruiz, T., Ariza, R.R., et al., ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase, Cell, 2002, vol. 111, pp. 803—814. https://doi.org/10.1016/S0092-8674(02)01133-9

    Article  CAS  PubMed  Google Scholar 

  24. Sallaud, C., Meynard, D., van Boxtel, J., et al., Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics, Theor. Appl. Genet., 2003, vol. 106, pp. 1396—1408. https://doi.org/10.1007/s00122-002-1184-x

    Article  CAS  PubMed  Google Scholar 

  25. De Wilde, C., Podevin, N., Windels, P., and Depicker, A., Silencing of antibody genes in plants with single-copy transgene inserts as a result of gene dosage effects, Mol. Genet. Genomics, 2001, vol. 265, pp. 647—653. https://doi.org/10.1007/s004380100458

    Article  CAS  PubMed  Google Scholar 

  26. Qin, H., Dong, Y., and von Arnim, A.G., Epigenetic interactions between Arabidopsis transgenes: characterization in light of transgene integration sites, Plant Mol. Biol., 2003, vol. 52, no. 1, pp. 217—231. https://doi.org/10.1023/a:1023941123149

    Article  CAS  PubMed  Google Scholar 

  27. Luo, Z. and Chen, Z., Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis, Plant Cell, 2007, vol. 19, no. 3, pp. 943—958. https://doi.org/10.1105/tpc.106.045724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lohuis, M., Muller, A., Heidmann, I., et al., A repetitive DNA fragment carrying a hot spot for de novo DNA methylation enhances expression variegation in tobacco and petunia, Plant J., 1995, vol. 8, pp. 919—932.

    Article  CAS  Google Scholar 

  29. Eike, M.C., Mercy, I.S., and Aalen, R.B., Transgene silencing may be mediated by aberrant sense promoter sequence transcripts generated from cryptic promoters, Cell. Mol. Life Sci., 2005, vol. 62, pp. 3080—3091. https://doi.org/10.1007/s00018-005-5301-2

    Article  CAS  PubMed  Google Scholar 

  30. Permyakova, N.V., Shumnyi, V.K., and Deineko, E.V., Agrobacterium-mediated transformation of plants: transfer of vector DNA fragments in the plant genome, Russ. J. Genet., 2009, vol. 45, no. 3, pp. 266—275. https://doi.org/10.1134/S1022795409030028

    Article  CAS  Google Scholar 

  31. Day, C.D., Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced, Genes Dev., 2000, vol. 14, no. 22, pp. 2869—2880. https://doi.org/10.1101/gad.849600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Robbins, M.L., Wang, P., Sekhon, R.S., and Chopra, S., Gene structure induced epigenetic modifications of pericarp color1 alleles of maize result in tissue specific mosaicism, PLoS One, 2009, vol. 4, no. 12, pp. 1—12. https://doi.org/10.1371/journal.pone.0008231

    Article  CAS  Google Scholar 

  33. Morita, Y., Saito, R., Ban, Y., et al., Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida, Plant J., 2012, vol. 70, no. 5, pp. 739—749. https://doi.org/10.1111/j.1365-313X.2012.04908.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the budgetary project no. 0259-2021-0010 “Study of Systems Metabolic Control of Living Systems in Conditions of Interaction with the Environment, Including after Genetic Modification.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Marenkova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals as an object.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any studies involving human participants as an object.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marenkova, T.V., Kuznetsov, V.V. & Deineko, E.V. Features of Expression of Foreign Genes in Complex Insertions in Transgenic Tobacco Plants with a Mosaic Pattern of nptII Gene Expression. Russ J Genet 57, 319–328 (2021). https://doi.org/10.1134/S1022795421030108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421030108

Keywords:

Navigation