Skip to main content
Log in

Peculiarities of the SprIR Quorum Sensing System of Serratia proteamaculans 94 and Its Involvement in Regulation of Cellular Processes

  • GENETICS OF MICROORGANISMS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The quorum sensing (QS) system SprIR of the psychrotrophic strain Serratia proteamaculans 94 was investigated. A mutant was constructed with the inactivated sprR gene encoding the regulatory receptor protein SprR. Inactivation of this gene was shown to affect the composition of fatty acids synthesized by S. proteamaculans 94 and did not affect the synthesis of N-acyl-L-homoserine-lactones (AHL); the activities of extracellular proteases, chitinases, and hemolysins; the swimming motility of cells; and the suppression of mycelium growth of fungal plant pathogens by volatile compounds emitted by this strain. Inactivation of the sprI gene (but not the sprR gene) reduced the biofilm formation, which increased when exogenous AHL was added to the culture. The comparative proteomic analysis of cell of the parent strain and mutant strains with inactivated sprI and sprR genes showed that the expression of 30 proteins in S. proteamaculans 94 is affected by the SprIR quorum sensing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fuqua, C., Winans, S.C., and Greenberg, E.P., Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators, Annu. Rev. Microbiol., 1996, vol. 50, pp. 727–751. https://doi.org/10.1146/annurev.micro.50.1.727

    Article  CAS  PubMed  Google Scholar 

  2. Waters, C.M. and Bassler, B.L., Quorum sensing: cell-to-cell communication in bacteria, Annu. Rev. Cell. Dev. Biol., 2005, vol. 21, pp. 319–346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001

    Article  CAS  PubMed  Google Scholar 

  3. Khmel, I.A. and Metlitskaya, A.Z., Quorum sensing regulation of gene expression: a promising target for drugs against bacterial pathogenicity, Mol. Biol. (Moscow), 2006, vol. 40, pp. 195–210.

    Article  CAS  Google Scholar 

  4. Veselova, M.A. Quorum sensing regulation in Pseudomonas, Russ. J. Genet., 2010, vol. 46, no. 2, pp. 129–137. https://doi.org/10.1134/S1022795410020018

  5. Zaitseva, Y.V., Popova, A.A., and Khmel, I.A., Quorum sensing regulation in bacteria of the family Enterobacteriaceae, Russ. J. Genet., 2014, vol. 50, no. 4, pp. 323–340. https://doi.org/10.1134/S1022795414030120

  6. Papenford, K. and Bassler, B., Quorum-sensing signal-response systems in gram-negative bacteria, Nat. Rev. Microbiol., 2016, vol. 14, pp. 576–588. https://doi.org/10.1038/nrmicro.2016.89

    Article  CAS  Google Scholar 

  7. Whiteley, M., Diggle, S.P., and Greenberg, E.P., Bacterial quorum sensing: the progress and promise of an emerging research area, Nature, 2017, vol. 551, no. 7680, pp. 313–320. https://doi.org/10.1038/natur.24624

  8. Beck von Bodman, S.B., Majerczak, D.R., and Coplin, D.L., A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartia subsp. stewartii, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 7687–7692. https://doi.org/10.1073/pnas.95.13.7687

    Article  Google Scholar 

  9. Horng, Y.T., Deng, S.C., Daykin, M., et al., The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens, Mol. Microbiol., 2002, vol. 45, pp. 1655–1671. https://doi.org/10.1046/j.1365-2958.2002.03117.x

    Article  CAS  PubMed  Google Scholar 

  10. Minogue, T.D., Wehland-von Trebra, M., Bernhard, F., and von Bodman, S.B., The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartia ssp. stewartii: evidence for a repressor function, Mol. Microbiol., 2002, vol. 44, no. 6, pp. 1625–1635. https://doi.org/10.1046/j.1365-2958.2002.02987.x

    Article  CAS  PubMed  Google Scholar 

  11. Christensen, A.B., Riedel, K., Eberl, L., et al., Quorum-sensing-directed protein expression in Serratia proteamaculans B5a, Microbiology, 2003, vol. 149, pp. 471–483. https://doi.org/10.1099/mic.0.25575-0

    Article  CAS  PubMed  Google Scholar 

  12. Van Houdt, R., Givskov, M., and Michiels, C.W., Quorum sensing in Serratia, FEMS Microbiol. Rev., 2007, vol. 31, pp. 407–424. https://doi.org/10.1111/j.1574-6976.2007.00071.x

    Article  CAS  PubMed  Google Scholar 

  13. Demidyuk, I.V., Kalashnikov, A.E., Gromova, T.Y., et al., Cloning, sequencing, expression, and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculans representing a new group of thermolysin-like proteases with short N-terminal region of precursor, Protein Expression Purif., 2006, vol. 47, pp. 551–561. https://doi.org/10.1016/j.pep.2005.12.005

    Article  CAS  Google Scholar 

  14. Zaitseva, Y.V., Koksharova, O.A., Lipasova, V.A., et al., SprI/SprR quorum sensing system of Serratia proteamaculans 94, BioMed. Res. Int., 2019, vol. 2019, article ID 3865780. https://doi.org/10.1155/2019/3865780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaitseva, Y.V., Lipasova, V.A., Plyuta, V.A., et al., Effect of inactivation of luxS gene on the properties of Serratia proteamaculans 94 strain, Folia Microbiol. (Praha), 2019, vol. 64, pp. 265–272. https://doi.org/10.1007/s12223-018-0657-5

    Article  CAS  Google Scholar 

  16. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, 1972.

    Google Scholar 

  17. McClean, K.H., Winson, M.K., Fish, L., et al., Quorum sensing in Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones, Microbiology, 1997, vol. 143, pp. 3703–3711. https://doi.org/10.1099/00221287-143-12-3703

    Article  CAS  PubMed  Google Scholar 

  18. Shaw, P.D., Ping, G., Daly, S.L., et al., Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 6036–6041. https://doi.org/10.1073/pnas.94.12.6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Current Protocols in Molecular Biology, Ausubel, F.M., Brendt, R., and Kingston, R.E., Eds., New York: Wiley, 1994.

    Google Scholar 

  20. Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., and Schweizer, H.P., A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants, Gene, 1998, vol. 212, pp. 77–86. https://doi.org/10.1016/s0378-1119(98)00130-9

    Article  CAS  PubMed  Google Scholar 

  21. Dennis, J.J. and Zylstra, G.J., Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gram-negative bacterial genomes, Appl. Environ. Microbiol., 1998, vol. 64, no. 7, pp. 2710—2715. https://doi.org/10.1128/AEM.64.7.2710-2715.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Popova, A.A., Koksharova, O.A., Lipasova, V.A., et al., Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans and Drosophila melanogaster, BioMed Res. Int., 2014, vol. 2014, article ID 125704. https://doi.org/10.1155/2014/125704

    Article  PubMed  PubMed Central  Google Scholar 

  23. Microbial Identification System Operational Manual, Version 4, Newark, DE: Microbial ID, 1992.

  24. Stead, D.E., Sellwood, J.E., Wilson, J., and Viney, I., Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria, J. Appl. Bacteriol., 1992, vol. 72, pp. 315–321.

    Article  Google Scholar 

  25. Yan, J.X., Wait, R., Berkelman, T., et al., A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry, Electrophoresis, 2000, vol. 21, pp. 3666–3672. https://doi.org/10.1002/1522-2683(200011)21:17<3666::AID-ELPS3666>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  26. Shevchenko, A., Chernushevich, I., Wilm, M., and Mann, M., De novo peptide sequencing by nanoelectrospray tandem mass spectrometry using triple quadrupole and quadrupole/time-of-flight instruments, Methods Mol. Biol., 2000, vol. 146, pp. 1–16. https://doi.org/10.1385/1-59259-045-4:1

    Article  CAS  PubMed  Google Scholar 

  27. Davies, D.G., Parsek, M.R., Pearson, J.P., et al., The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 1998, vol. 280, pp. 295–298.

    Article  CAS  Google Scholar 

  28. Labbate, M., Queck, S.Y., Koh, K.S., et al., Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1, J. Bacteriol., 2004, vol. 186, pp. 692–698. https://doi.org/10.1128/jb.186.3.692-698.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ercolini, D., Russo, F., Nasi, A., et al., Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef, Appl. Environ. Microbiol., 2009, vol. 75, pp. 1990–2001. https://doi.org/10.1128/AEM.02762-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rice, S.A., Koh, K.S., Queck, S.Y., et al., Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues, J. Bacteriol., 2005, vol. 187, pp. 3477–3485. https://doi.org/10.1128/JB.187.10.3477-3485.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaitseva, Yu.V., Voloshina, P.V., Liu, Kh., et al., Involvement of the global regulators GrrS, RpoS, and SplIR in formation of biofilms in Serratia plymuthica, Russ. J. Genet., 2010, vol. 46, no. 5, pp. 541–545. https://doi.org/10.1134/S1022795410050054

    Article  CAS  Google Scholar 

  32. Sinensky, M., Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 1974, vol. 71, pp. 522–525. https://doi.org/10.1073/pnas.71.2.522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cybulski, L.E., Albanesi, D., Mansilla, M.C., et al., Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase, Mol. Microbiol., 2002, vol. 45, pp. 1379–1388. https://doi.org/10.1046/j.1365-2958.2002.03103.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research, projects no. 18-04-00375 and no. 19-04-00756, and by a grant of the Ministry of Education and Sciences of the Russian Federation, State Order for Yaroslavl State University, project no. 0856-2020-0008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Khmel.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, Y.V., Lipasova, V.A., Koksharova, O.A. et al. Peculiarities of the SprIR Quorum Sensing System of Serratia proteamaculans 94 and Its Involvement in Regulation of Cellular Processes. Russ J Genet 57, 161–172 (2021). https://doi.org/10.1134/S1022795421020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421020149

Keywords:

Navigation