Skip to main content
Log in

Cytogenetic Effects of Carbendazim on Mouse Bone Marrow Cells

  • GENERAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A study of the genotoxic activity of fungicide carbendazim was carried out. It was demonstrated that the tested technical grade active ingredient of carbendazim in the dose range of 125–2000 mg/kg body weight induced a statistically significant dose-dependent increase in the frequency of micronucleated polychromatic (PCE) and normochromatic erythrocytes (NCE) in the bone marrow of CD-1 mice. After administration of carbendazim at doses of 250–2000 mg/kg body weight, the accumulation of cells containing two or more micronuclei was observed. According to the results of comet assay, there was no increase in the level of breaks and alkali-labile sites in the DNA of the mouse bone marrow and liver cells after administration of technical grade carbendazim at doses up to 2000 mg/kg body weight. It is therefore suggested that the observed accumulation of cells with micronuclei is due to the aneugenic effect of carbendazim. In addition, a dose-dependent increase in the proportion of macrocytes/gigantocytes and dumbbell-shaped cells with constrictions among PCEs and NCEs was observed, which might be indicative of the inhibitory effect of the test pesticide on cytokinesis. The accumulation of polychromatophiles with pyknotic nuclei after exposure to carbendazim is probably caused by the distortion of nuclear extrusion. A possible general mechanism underlying the impairment of karyokinesis, cytokinesis, and nuclear extrusion in mammalian bone marrow erythroid cells is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. https://www.pan-europe.info/facsheets/carbendazim.

  2. Singh, S., Singh, N., Kumar, V., Datta, S., et al., Toxicity, monitoring and biodegradation of the fungicide carbendazim, Environ. Chem. Lett., 2016, vol. 14, no. 3, pp. 317—329. https://doi.org/10.1007/s10311-016-0566-2

    Article  CAS  Google Scholar 

  3. Muthuviveganandavel, V., Muthuraman, P., Muthu, S., and Srikumar, K., Toxic effects of carbendazim at low dose levels in male rats, J. Toxicol. Sci., 2008, vol. 33, no. 1, pp. 25—30. https://doi.org/10.2131/jts.33.25

    Article  CAS  PubMed  Google Scholar 

  4. Carter, S.D., Hess, R.A., and Laskey, J.W., The fungicide methyl benzimidazole carbamate causes infertility in male Sprague—Dawley rats, Biol. Reprod., 1978, vol. 37, no. 3, pp. 709—717. https://doi.org/10.1095/biolreprod37.3.709

    Article  Google Scholar 

  5. Gray, L.E., Jr., Ostby, J., Linder, R., et al., Carbendazim induced alterations of reproductive development and function in the rat and hamster, Fundum. Appl. Tox., 1990, vol. 15, no. 2, pp. 281—297. https://doi.org/10.1016/0272-0590(90)90055-O

    Article  CAS  Google Scholar 

  6. Liu, J., Zhang, P., Zhao, Y., and Zhang, H., Low dose carbendazim disrupts mouse spermatogenesis might be through estrogen receptor related histone and DNA methylation, Ecotoxicol. Environ. Saf., 2019. vol. 176, pp. 242—249. https://doi.org/10.1016/j.ecoenv.2019.03.103

    Article  CAS  PubMed  Google Scholar 

  7. Lu, S.Y., Liao, J.W., Kuo, M.L., et al., Endocrine-disrupting activity in carbendazim-induced reproductive and developmental toxicity in rats, J. Toxicol. Environ. Health, Part A, 2004, vol. 67, no. 19, pp. 1501—1515. https://doi.org/10.1080/15287390490486833

    Article  CAS  Google Scholar 

  8. Mnif, W., Hassine, A.I.H., Bouaziz, A., et al., Effect of endocrine disruptor pesticides: a review, Int. J. Environ. Res. Public Health, 2011, vol. 8, no. 6, pp. 2265—2303. https://doi.org/10.3390/ijerph8062265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morinaga, H., Yanase, T., Nomura, M., et al., A benzimidazole fungicide, benomyl, and its metabolite, carbendazim, induce aromatase activity in a human ovarian granulose-like tumor cell line (KGN), Endocrinology, 2004, vol. 145, no. 4, pp. 1860—1869. https://doi.org/10.1210/en.2003-1182

    Article  CAS  PubMed  Google Scholar 

  10. Kawaratani, Y., Matsuoka, T., Hirata, Y., et al., Influence of the carbamate fungicide benomyl on the gene expression and activity of aromatase in the human breast carcinoma cell line MCF-7, Environ. Toxicol. Pharmacol., 2015, vol. 39, no. 1, pp. 292—299. https://doi.org/10.1016/j.etap.2014.11.032

    Article  CAS  PubMed  Google Scholar 

  11. Kim, D.-J., Seok, S.H., Baek, M.W., et al., Benomyl induction of brain aromatase and toxic effects in the zebrafish embryo, J. Appl. Toxicol., 2009, vol. 29, no. 4, pp. 289—294. https://doi.org/10.1002/jat.1405

    Article  CAS  PubMed  Google Scholar 

  12. Rama, E.M., Bortolan, S., Vieira, M.L., et al., Reproductive and possible hormonal effects of carbendazim, Regul. Toxicol. Pharmacol., 2014, vol. 69, no. 3, pp. 476—486. https://doi.org/10.1016/j.yrtph.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  13. Minta, M. and Biernacki, B., Embryotoxicity of carbendazim in hamsters, rats, and rabbits, Bull. Vet. Inst. Pulawy (Poland), 1982, vol. 25, pp. 42—52.

    CAS  Google Scholar 

  14. Sitarek, K., Embryolethal and teratogenic effects of carbendazim in rats, Teratogen. Carcinogen. Mutagen., 2001, vol. 21, no. 5, pp. 335—340. https://doi.org/10.1002/tcm.1021

    Article  CAS  Google Scholar 

  15. Yoon, C.S., Jin, J.H., Park, J.H., et al., Toxic effects of carbendazim and n-butyl isocyanate, metabolites of the fungicide benomyl, on early development in the African clawed frog, Xenopus laevis,Inc. Environ. Toxicol., 2008, vol. 23, no. 1, pp. 131—144. https://doi.org/10.1002/tox.20338

    Article  CAS  Google Scholar 

  16. Farag, A., Ebrahim, H., ElMazoudy, R., and Kadous, E., Developmental toxicity of fungicide carbendazim in female mice, Birth Defects Res.,Part B, 2011, vol. 92, no. 2, pp. 122—130. https://doi.org/10.1002/bdrb.20290

    Article  CAS  Google Scholar 

  17. Sarrif, A.M., Bentley, K.S., Fu, L.J., et al., Evaluation of benomyl and carbendazim in the vivo aneuploidy/micronucleus assay in BDF1 mouse bone marrow, Mutat. Res., Fundam. Mol. Mech. Mutagen., 1994, vol. 310, no. 1, pp. 143—149. https://doi.org/10.1016/0027-5107(94)90018-3

    Article  CAS  Google Scholar 

  18. Tweats, D.J., Johnson, G.E., Scandale, I., et al., Genotoxicity of flubendazole and its metabolites in vitro and the impact of a new formulation on in vivo aneugenicity, Mutagenesis, 2016, vol. 31, no. 3, pp. 309—321. https://doi.org/10.1093/mutage/gev070

    Article  CAS  PubMed  Google Scholar 

  19. Goodson, W.H., Lowe, L., Carpenter, D.O., et al., Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead, Carcinogenesis, 2015, vol. 36, suppl. 1, pp. S254—S296. https://doi.org/10.1093/carcin/bgv039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. EU Pesticides database. http://ec.europa.eu/food/ plant/pesticides/eu-pesticides-database/public/?ev-ent=activesubstance.detail&language=EN&selectedID=1080.

  21. Carbendazim (Ref: BAS 345F IUPAC). https://sitem.herts.ac.uk/aeru/iupac/Reports/116.htm.

  22. Benomyl (Ref: T 1991 IUPAC). https://sitem.herts. ac.uk/aeru/iupac/Reports/66.htm.

  23. Registration: Benomyl RED Facts. https://archive. epa.gov/pesticides/reregistration/web/html/benomyl_ fs.html.

  24. Spravochnik pestitsidov i agrokhimikatov, razreshennykh k primeneniyu na territorii Rossiiskoi Federatsii (Handbook of Pesticides and Agrochemicals Approved for Use on the Territory of the Russian Federation), Moscow: Lissterra, 2019.

  25. Mammalian Erythrocyte Micronucleus Test: OECD Test TG 474, OECD Guidelines for the Testing of Chemicals, section 4, Paris: OECD, 2016.

  26. In vivo Mammalian Alkaline Comet Assay: OECD Test no. 489, OECD Guidelines for the Testing of Chemicals, section 4, Paris: OECD, 2016.

  27. Metodicheskie rekomendatsii: otsenka mutagennoi aktivnosti faktorov okruzhayushchei sredy v kletkakh raznykh organov mlekopitayushchikh mikroyadernym metodom (Methodical Recommendations: Assessment of the Mutagenic Activity of Environmental Factors in the Cells of Various Mammal Organs Using the Micronuclear Method), Moscow: Mezhvedomstvennyi Nauchnyi Sovet po Ekologii Cheloveka i Gigiene Okruzhayushchei Sredy Rossiiskoi Federatsii, 2001.

  28. McCullagh, P. and Nelder, J.A., Generalized Linear Models, London: Chapman and Hall, 1989. http://www.utstat.toronto.edu/~brunner/oldclass/2201s11/ readings/glmbook.pdf.

    Book  Google Scholar 

  29. Agresti, A., Categorical Data Analysis, Hoboken, New Jersey: Wiley, 2013, 3rd ed.

    Google Scholar 

  30. Ilyushina, N., Goumenou, M., Stivaktakis, P.D., et al., Maximum tolerated doses and erythropoiesis effects in the mouse bone marrow by 79 pesticides’ technical materials assessed with the micronucleus assay, Toxicol. Rep., 2019, vol. 6, pp. 105—110. https://doi.org/10.1016/j.toxrep.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  31. Carbendazim (methyl benzimidazol-2-yl carbamate). https://onlinelibrary.wiley.com/doi/full/10.1002/352-7600418.mb1060521e4014.

  32. Albertini, S., Influence of different factors on the induction of chromosome malsegregation in Saccharomyces cerevisiae D61.M by bavistan and assessment of its genotoxic property in the Ames test and in Saccharomyces cerevisiae D7, Mutat. Res., 1989, vol. 216, no. 6, pp. 327—340. https://doi.org/10.1016/0165-1161(89)90043-5

    Article  CAS  PubMed  Google Scholar 

  33. Banduhn, N. and Obe, G., Mutagenicity of methyl 2-benzimidazolecarbamate, diethylstilbestrol and estradiol: structural chromosomal aberrations, sister-chromatid exchanges, C-mitoses, polyploidies and micronuclei, Mutat. Res., 1985, vol. 156, no. 3, pp. 199—218. https://doi.org/10.1016/0165-1218(85)90065-5

    Article  CAS  PubMed  Google Scholar 

  34. Vigreux, C., Poul, J.M., Deslandes, E., et al., DNA damaging effects of pesticides measured by the single cell gel electrophoresis assay (comet assay) and the chromosomal aberration test, in CHOK1 cells, Mutat. Res., 1998, vol. 419, nos. 1—3, pp. 79—90. https://doi.org/10.1016/S1383-5718(98)00126-0

    Article  CAS  PubMed  Google Scholar 

  35. Lebailly, P., Vigreux, C., Godard, T., et al., Assessment of DNA damage induced in vitro by etoposide and two fungicides (carbendazim and chlorothalonil) in human lymphocytes with the comet assay, Mutat. Res., 1997, vol. 375, no. 2, pp. 205—217. https://doi.org/10.1016/S0027-5107(97)00015-8

    Article  CAS  PubMed  Google Scholar 

  36. McCarroll, N.E., Protzel, A., Ioannou, Y., et al., A survey of EPA/OPP and open literature on selected pesticide chemicals: III. Mutagenicity and carcinogenicity of benomyl and carbendazim, Mutat. Res., 2002, vol. 512, no. 1, pp. 1—35. https://doi.org/10.1016/S1383-5742(02)00026-1

    Article  CAS  PubMed  Google Scholar 

  37. Elhajouji, A., Van Hummelen, P., and Kirsch-Volders, M., Indications for a threshold of chemically-induced aneuploidy in vitro in human lymphocytes, Environ. Mol. Mutagen., 1995, vol. 26, no. 4, pp. 292—304. https://doi.org/10.1002/em.2850260405

    Article  CAS  PubMed  Google Scholar 

  38. Verma, J.R., Rees, B.J., Wilde, E.C., et al., Evaluation of the automated MicroFlow® and Metafer™ platforms for high-throughput micronucleus scoring and dose response analysis in human lymphoblastoid TK6 cells, Arch. Toxicol., 2017, vol. 91, no. 7, pp. 2689—2698. https://doi.org/10.1007/s00204-016-1903-8

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka, R., Sasanami, T., Toriyama, M., et al., Aneugenic effects of carbendazim and griseofulvin as assayed in the in vitro maturation system of mouse oocytes, Environ. Mutagen Res., 2004, vol. 26, no. 3, pp. 203—206. https://doi.org/10.3123/jems.26.203

    Article  CAS  Google Scholar 

  40. Davidse, L.C., Mode of action of methyl benzimidazol-2-yl-carbamate (MBC) and some biochemical aspects of acquired resistance against this fungicide in Aspergillus nidulans, System Fungizide, Lyr, H. and Potter, C., Eds., Berlin: Akademic, 1975.

    Google Scholar 

  41. Li, J., Katiyar, S.K., and Edlind, T.D., Site-directed mutagenesis Saccharomyces cerevisiae beta-tubulin: interaction between residue 167 and benzimidazole compounds, FEBS Lett., 1996, vol. 385, nos. 1—2, pp. 7—10. https://doi.org/10.1016/0014-5793(96)00334-1

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, Y., Xu, J., Zhu, Y., et al., Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: interfering with polymerization of monomeric tubulin but not polymerized microtubule, Phytopathology, 2016, vol. 106, no. 8, pp. 807—813. https://doi.org/10.1094/PHYTO-08-15-0186-R

    Article  CAS  PubMed  Google Scholar 

  43. Straight, A.F. and Field, C.M., Microtubules, membranes and cytokinesis, Curr. Biol., 2000, vol. 10, no. 20, pp. 760—770. https://doi.org/10.1016/S0960-9822(00)00746-6

    Article  Google Scholar 

  44. Danilchik, M.V., Funk, W.C., Brown, E.E., and Larkin, K., Requirement for microtubules in new membrane formation during cytokinesis of Xenopus embryos, Dev. Biol., 1998, vol. 194, no. 1, pp. 47—60. https://doi.org/10.1006/dbio.1997.8815

    Article  CAS  PubMed  Google Scholar 

  45. Larkin, K. and Danilchik, M.V., Microtubules are required for completion of cytokinesis in sea urchin eggs, Dev. Biol., 1999, vol. 214, no. 1, pp. 215—226. https://doi.org/10.1006/dbio.1999.9395

    Article  CAS  PubMed  Google Scholar 

  46. Shu, H.B., Li, Z., Palacios, M.J., et al., A transient association of gamma-tubulin at the midbody is required for the completion of cytokinesis during the mammalian cell division, J. Cell Sci., 1995, vol. 108, no. 9, pp. 2955—2962.

    CAS  PubMed  Google Scholar 

  47. Julian, M., Tollon, Y., Lajoie-Mazenc, I., et al., Gamma-tubulin participates in the formation of the midbody during cytokinesis in mammalian cells, J. Cell Sci., 1993, vol. 105, no. 1, pp. 145—156.

    CAS  PubMed  Google Scholar 

  48. Keerthivasan, G., Wickrema, A., and Crispino, J.D., Erythroblast enucleation, Stem Cells Int., 2011, article ID 139851. https://doi.org/10.4061/2011/139851

  49. Migliaccio, A.R., Erythroblast enucleation, Haematologica, 2010, vol. 95, no. 12, pp. 1985—1988. https://doi.org/10.3324/haematol.2010.033225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xie, S., Yan, B., Feng, J., et al., Altering microtubule stability affects microtubule clearance and nuclear extrusion during erythropoiesis, J. Cell. Physiol., 2019, vol. 234, no. 11, pp. 19833—19841. https://doi.org/10.1002/jcp.28582

    Article  CAS  PubMed  Google Scholar 

  51. Kobayashi, I., Ubukawa, K., Sugawara, K., et al., Erythroblast enucleation is a dynein-dependent process, Exp. Hematol., 2016, vol. 44, pp. 247—256. https://doi.org/10.1016/j.exphem.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  52. Konstantinidis, D.G., Pushkaran, S., Johnson, J.F., et al., Signaling and cytoskeletal requirements in erythroblast enucleation, Blood, 2012, vol. 119, no. 25, pp. 6118—6127. https://doi.org/10.1182/blood-2011-09-379263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks N.S. Averyanova for help in performing the comet assay and G.V. Masaltsev for help in statistical analysis of the data.

Funding

The preparation of the article did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Ilyushina.

Ethics declarations

Conflict of interest. The author declares that she has no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any research involving humans as a subject.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyushina, N.A. Cytogenetic Effects of Carbendazim on Mouse Bone Marrow Cells. Russ J Genet 56, 1193–1202 (2020). https://doi.org/10.1134/S1022795420090094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420090094

Keywords:

Navigation