Skip to main content
Log in

Hereditary Symbionts: Genomic Integration

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Data on hereditary symbionts of insects, i.e., on symbiotic bacteria that live in the cytoplasm of host cells and are transmitted between generations transovarially (through the egg), are summarized. Cases of obligate symbiosis, in which bacteria supply the host with the substances that the insect does not receive from food (amino acids, vitamins), and cases of reproductive parasitism, in which the bacterium manipulates host reproduction, ensuring primary transmission of the symbiont between generations, are considered. The integration of host and symbiont genomes, the functional combination of which creates the combined genome, or symbiogenome, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lobashev, M.E., Genetika (Genetics), Leningrad: Leningrad Univ., 1967.

    Google Scholar 

  2. Lederberg, J., Cell genetics and hereditary symbionts, Physiol. Rev., 1952, vol. 32, pp. 403—430.

    Article  CAS  Google Scholar 

  3. Preer, J.R., Extrachromosomal inheritance: hereditary symbionts, mitochondria, chloroplasts, Ann. Rev. Genet.,1971, vol. 5, pp. 361—406.

    Article  CAS  Google Scholar 

  4. Pinevich, A.V., Kozhevnikova, E.V., and Averina, S.G., Bioplenki i drugie prokariotnye konsortsiumy (Biofilms and Other Prokaryotic Consortia), St. Petersburg: Khimizdat, 2018.

  5. Regassa, L.B. and Gasparich, G.E., Spiroplasmas: evolutionary relationships and biodiversity, Front. Biosci., 2006, vol. 11, pp. 2983—3002.

    Article  CAS  Google Scholar 

  6. Bolanos, L.M., Servín-Garciduenas, L.E., and Martínez-Romero, E., Arthropod—Spiroplasma relationship in the genomic era, FEMS Microbiol. Ecol., 2015, vol. 91, pp. 1—8. https://doi.org/10.1093/femsec/fiu008

    Article  CAS  PubMed  Google Scholar 

  7. Cacciola, S.O., Bertaccini, A., Pane, A., and Furneri, P.M., Spiroplasma spp.: a plant, arthropod, animal and human pathogen., Citrus Phathology, Gill, H., Ed., 2017, chapter 2, pp. 31—51. https://doi.org/10.5772/66481.

  8. Davis, R.E., Lee, I.M., and Worley, J.F., Spiroplasma floricola, a new species isolated from surfaces of flowers of the tulip tree, Liriodendron tulipifera L., Int. J. Syst. Bacteriol., 1981, vol. 31, pp. 456—464. https://doi.org/10.1099/00207713-31-4-456

    Article  CAS  Google Scholar 

  9. Ebbert, M.A. and Nault, L.R., Improved overwintering ability in Dalbulusmaidis (Homoptera: Cicadellidae) vectors infected with Sprioplasma kunkelii (Mycoplasmatales: Spiroplasmataceae), Environ. Ent., 1994, vol. 23, pp. 634—644.

    Article  Google Scholar 

  10. Xie, J., Tiner, B., Vilchez, I., and Mateos, M., Effect of the Drosophila endosymbiont Spiroplasma on parasitoid wasp development and on the reproductive fitness of wasp-attacked fly survivors, Evol. Ecol., 2011, vol. 53, no. 5, pp. 1065—1079.https://doi.org/10.1007/s10682-010-9453-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Majerus, T.M., Graf von der Schulenburg, J.H., Majerus, M.E., and Hurst, G.D., Molecular identification of a male-killing agent in the ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), Insect Mol. Biol., 1999, vol. 8, no. 4, pp. 551—555.

    Article  CAS  Google Scholar 

  12. Zakharov, I.A., Zinkevich, N.S., Shaikevich, E.V., et al., Sex ratio and male killing in Siberian populations of Harmonia axyridis (Pall.), Russ. J. Genet., 1999, vol. 35, no. 6, pp. 771—776.

    CAS  Google Scholar 

  13. Malogolowkin, C., Maternally inherited “sex-ratio” conditions in Drosophila willistoni and Drosophila paulistorum,Genetics, 1958, vol. 43, pp. 274—286.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Williamson, D.L., Sakaguchi, B., Hackett, K.J., et al., Spiroplasma poulsonii sp. nov., a new species associated with male-lethality in Drosophila willistoni, a neotropical species of fruit fly, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 611—618. https://doi.org/10.1099/00207713-49-2-611

    Article  PubMed  Google Scholar 

  15. Baumann, P., Moran, N.A., and Baumann, L., Bacteriocyte-associated endosymbionts of insects, in Prokaryotes, Dworkin, M., Ed., 2006, vol. 1, chapter 2.3, pp. 403—438. https://doi.org/10.1007/0-387-30741-9_16

    Book  Google Scholar 

  16. Nikoh, N., McCutcheon, J.P., Kudo, T., et al., Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host, PLoS Genet., 2010, vol. 6, no. 2. e1000827. https://doi.org/10.1371/journal.pgen.1000827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCutcheon, J.P. and von Dohlen, C.D., An interdependent metabolic patchwork in the nested symbiosis of mealybugs, Curr. Biol., 2011, vol. 21, no. 16, pp. 1366—1372. https://doi.org/10.1016/j.cub.2011.06.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spaulding, A.W. and von Dohlen, C.D., Phylogenetic characterization and molecular evolution of bacterial endosymbionts in Psyllids (Hemiptera: Sternorrhyncha), Mol. Biol. Evol., 1998, vol. 15, no. 11, pp. 1506—1513.

    Article  CAS  Google Scholar 

  19. Spaulding, A.W. and von Dohlen, C.D., Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA, Insect Mol. Biol., 2001, vol. 10, no. 1, pp. 57—67.

    Article  CAS  Google Scholar 

  20. Tamames, J., Gil, R., Latorre, A., et al., The frontier between cell and organelle: genome analysis of CandidatusCarsonellaruddii, BMC Evol. Biol., 2007, vol. 7, no. 181. https://doi.org/10.1186/1471-2148-7-181

  21. Chen, X., Li, S., and Aksoy, S., Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia, J. Mol. Evol., 1999, vol. 48, no. 1, pp. 49—58.

    Article  CAS  Google Scholar 

  22. Aksoy, S., Chen, X., and Hypsa, V., Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera: Glossinidae), Insect Mol. Biol.,1997, vol. 6, no. 2, pp. 183—190.

    Article  CAS  Google Scholar 

  23. Attardo, G.M., Lohs, C., Heddi, A., et al., Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity, J. Insect Physiol., 2008, vol. 54, no. 8, pp. 1236—1242 https://doi.org/10.1016/j.jinsphys.2008.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balmand, S., Lohs, C., Aksoy, S., et al., Tissue distribution and transmission routes for the Tsetse fly endosymbionts, J. Invertebr. Pathol., 2013, vol. 112, pp. 116—122.https://doi.org/10.1016/j.jip.2012.04.002

    Article  Google Scholar 

  25. Hosokawa, T., Koga, R., Kikuchi, Y., et al., Wolbachia as a bacteriocyte-associated nutritional mutualist, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 2, pp. 769—774. https://doi.org/10.1073/pnas.0911476107

    Article  PubMed  Google Scholar 

  26. Nikoh, N., Hosokawa, T., Moriyama, M., et al., Evolutionary origin of insect—Wolbachia nutritional mutualism, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 28, pp. 10257—10262. https://doi.org/10.1073/pnas.1409284111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yen, J.H. and Barr, A.R., New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L., Nature, 1971, vol. 232, pp. 657—658.

    Article  CAS  Google Scholar 

  28. Stouthamer, R. and Kazmer, J.D., Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps, Heredity, 1994, vol. 73, pp. 317—327.

    Article  Google Scholar 

  29. Rousset, F.F., Bouchon, D., Pintureau, B., et al., Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods, Proc. R. Soc. London, Ser. B, 1992, vol. 250, no. 1328, pp. 91—98. https://doi.org/10.1098/rspb.1992.0135

    Article  CAS  Google Scholar 

  30. Lus, Ya.Ya., Some trends in reproduction of the Adalia bipunctata L. populations: maleless lines in populations, Dokl. Akad. Nauk SSSR, 1947, vol. 57, no. 9, pp. 951—954.

    Google Scholar 

  31. Matsuka, M., Hashi, H., and Okada, I., Abnormal sex-ratio found in the ladybeetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), Appl. Entomol. Zool., 1975, vol. 10, no. 2, pp. 84—89. https://doi.org/10.1303/aez.10.84

    Article  Google Scholar 

  32. Werren, J.H., Hurst, G.D.D., Zhang, W., et al., Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata), J. Bacteriol., 1994, vol. 176, pp. 388—394.

    Article  CAS  Google Scholar 

  33. Takano, S.I., Tuda, M., Takasu, K., et al., Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 23, pp. 6110—6115. https://doi.org/10.1073/pnas.1618094114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nakanishi, K., Hoshino, M., Nakai, M., and Kunimi, Y., Novel RNA sequences associated with late male killing in Homona magnanima,Proc. R. Soc. B, 2008, vol. 275, pp. 1249—1254. https://doi.org/10.1098/rspb.2008.0013

    Article  CAS  PubMed  Google Scholar 

  35. Kageyama, D., Narita, S., and Watanabe, M., Insect sex determination manipulated by their endosymbionts: incidences, mechanisms and implications, Insects, 2012, vol. 3, pp. 161—199. https://doi.org/10.3390/insects3010161

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ma, W.-J. and Schwander, T., Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis, J. Evol. Biol., 2017, vol. 30, no. 5, pp. 868—888. https://doi.org/10.1111/jeb

    Article  PubMed  Google Scholar 

  37. Zug, R. and Hammerstein, P., Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected, PLoS One, 2012, vol. 7, no. 6. e38544. https://doi.org/10.1371/journal.pone.0038544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oliver, K.M., Russell, J.A., Moran, N.A., and Hunter, M.S., Facultative bacterial symbionts in aphids confer resistance to parasitic wasps, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 1803—1807. https://doi.org/10.1073/pnas.0335320100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scarborough, C.L., Ferrari, J., and Godfray, H.C.J., Aphid protected from pathogen by endosymbiont, Science, 2005, vol. 310, p. 1781. https://doi.org/10.1126/science.1120180

    Article  CAS  PubMed  Google Scholar 

  40. Haine, E.R., Symbiont-mediated protection, Proc. R. Soc. B, 2008, vol. 275, pp. 353—361. https://doi.org/10.1098/rspb.2007.1211

    Article  PubMed  Google Scholar 

  41. Teixeira, L., Ferreira, A., and Ashburner, M., The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster,PLoS Biol., 2008, no. 6. e1000002. https://doi.org/10.1371/journal.pbio.1000002

  42. Brownlie, J.C., Cass, B.N., Riegler, M., et al., Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress, PLoS Pathog., 2009, vol. 5, no. 4. e1000368. https://doi.org/10.1371/journal.ppat.1000368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jaenike, J., Unckless, R., Cockburn, S.N., et al., Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont, Science, 2010, vol. 329, pp. 212—215. https://doi.org/10.1126/science.1188235

    Article  CAS  PubMed  Google Scholar 

  44. Xie, J., Vilchez, I., and Mateos, M., Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma,PLoS One, 2010, vol. 5, no. 8. e12149. https://doi.org/10.1371/journal.pone.0012149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brumin, M., Kontsedalov, S., and Ghanim, M., Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype, Insect Sci., 2011, vol. 18, no. 1, pp. 57—66. https://doi.org/10.1111/j.1744-7917.2010.01396.x

    Article  Google Scholar 

  46. Weiss, B.L., Wang, J., and Aksoy, S., Tsetse immune system maturation requires the presence of obligate symbionts in larvae, PLoS Biol., 2011, vol. 9, no. 5. e1000619. https://doi.org/10.1371/journal.pbio.1000619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaenike, J., Population genetics of beneficial heritable symbionts, Trends Ecol. Evol., 2012, vol. 27, pp. 226—232. https://doi.org/10.1016/j.tree.2011.10.005

    Article  PubMed  Google Scholar 

  48. Xie, J., Butler, S., Sanchez, G., and Mateos, M., Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps, Heredity (Edinburg), 2014, vol. 112, no. 4, pp. 399—408. https://doi.org/10.1038/hdy.2013.118

    Article  CAS  PubMed  Google Scholar 

  49. Kiuchi, T., Koga, H., Kawamoto, M., et al., A single female-specific piRNA is the primary determiner of sex in the silkworm, Nature, 2014, vol. 509, pp. 633—636. https://doi.org/10.1038/nature13315

    Article  CAS  PubMed  Google Scholar 

  50. Criscione, F., Qi, Y., and Tu, Z., GUY1confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi,eLife, 2016, vol. 5. e19281. https://doi.org/10.7554/eLife.19281

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hall, A.B., Basu, S., Jiang, X., et al., A male-determining factor in the mosquito Aedes aegypti,Science, 2015, vol. 348, pp. 1268—1270. https://doi.org/10.1126/science.aaa2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Erickson, J.W. and Quintero, J.J., Indirect effects of ploidy suggest X chromosome dose, not the X:A ratio, signals sex in Drosophila,PLoS Biol., 2007, vol. 5, no. 12. e332. https://doi.org/10.1371/journal.pbio.0050332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beye, M., Hasselmann, M., Fondrk, M.K., et al., The gene csd is the primary signal for sexual development in the honey bee and encodes an SRtype protein, Cell, 2003, vol. 114, pp. 419—429.https://doi.org/10.1016/S0092-8674(03)00606-8

    Article  CAS  PubMed  Google Scholar 

  54. Hasselmann, M., Gempe, T., and Schiøtt, M., Evidence for the evolutionary nascence of a novel sex determination pathway in honey bees, Nature, 2008, vol. 454, pp. 519—523. https://doi.org/10.1038/nature07052

    Article  CAS  PubMed  Google Scholar 

  55. Nagoshi, R.N., McKeown, M., Burtis, K.C., et al., The control of alternative splicing at genes regulating sexual differentiation in D. melanogaster,Cell, 1988, vol. 53, pp. 229—336.

    Article  CAS  Google Scholar 

  56. Clough, E., Jimenez, E., Kim, Y.A., et al., Sex-and tissue-specific functions of Drosophila doublesex transcription factor target genes, Dev. Cell, 2014, vol. 31, pp. 761—773. https://doi.org/10.1016/j.devcel.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sánchez, L., Sex-determining mechanisms in insect, Int. J. Dev. Biol., 2008, vol. 52, pp. 837—856. https://doi.org/10.1387/ijdb.072396ls

    Article  PubMed  Google Scholar 

  58. Beukeboom, L.W., Microbial manipulation of host sex determination: endosymbiotic bacteria can directly manipulate their host’s sex determination towards the production of female offspring, BioEssays, 2012, vol. 3, pp. 484—488. https://doi.org/10.1002/bies.201100192

    Article  Google Scholar 

  59. Sugimoto, T.N. and Ishikawa, Y., A male-killing Wolbachia carries a feminizing factor and is associated with degradation of the sex-determining system of its host, Biol. Lett., 2012, vol. 8, pp. 412—415. https://doi.org/10.1098/rsbl.2011.1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fukui, T., Kawamoto, M., Shoji, K., et al., The endosymbiotic bacterium Wolbachia selectively kills male hosts by targeting the masculinizing gene, PLoS Pathog., 2015, vol. 11, no. 7. e1005048. https://doi.org/10.1371/journal.ppat.1005048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harumoto, T. and Lemaitre, B., Male-killing toxin in a bacterial symbiont of Drosophila,Nature, 2018, vol. 557, pp. 252—255.https://doi.org/10.1038/s41586-018-0086-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. LePage, D.P., Metcalf, J.A., Bordenstein, S.R., et al., Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility, Nature, 2017, vol. 543, no. 7644, pp. 243—247. https://doi.org/10.1038/nature21391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hurst, G.D.D., Jiggins, F.M., Schulenburg, J.H., et al., Male-killing Wolbachia in two species of insect, Proc. R. Soc. London, Ser. B, 1999, vol. 266, pp. 735—740. https://doi.org/10.1098/rspb.1999.0698

    Article  Google Scholar 

  64. Werren, J.H., Skinner, S.W., and Huger, A.M., Male-killing bacteria in a parasitic wasp, Science, 1986, vol. 231, pp. 990—992.

    Article  CAS  Google Scholar 

  65. Ferree, P.M., Avery, A., Azpurua, J., et al., A bacterium targets maternally inherited centrosomes to kill males in Nasonia,Curr. Biol., 2008, vol. 18, pp. 1409—1414. https://doi.org/10.1016/j.cub.2008.07.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simon, J.C., Boutin, S., Tsuchida, T., et al., Facultative symbiont infections affect aphid reproduction, PLoS One, 2011, vol. 6, no. 7. e21831. https://doi.org/10.1371/journal.pone.0021831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hurst, L.D., The incidences and evolution of cytoplasmic male killers, Proc. R. Soc. London, Ser. B, 1991, vol. 244, no. 1310, pp. 91—99. https://doi.org/10.1098/rspb.1991.0056

    Article  Google Scholar 

  68. Hurst, G.D.D. and Majerus, M.E.N., Why do maternally inherited microorganisms kill males?, Heredity, 1993, vol. 71, pp. 81—95.

    Article  Google Scholar 

  69. Dyson, E.A. and Gregory, D.D., Persistence of an extreme sex ratio bias in a natural population, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 17, pp. 6520—6523. https://doi.org/10.1073/pnas.0304068101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hornett, E.A., Moran, B., Reynolds, L.A., et al., The evolution of sex ratio distorter suppression affects a 25 cM genomic region in the butterfly Hypolimnas bolina,PLoS Genet., 2014, vol. 10, no. 12. e1004822. https://doi.org/10.1371/journal.pgen.1004822

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kageyama, D., Ohno, S., Hoshizaki, S., and Ishikawa, Y., Sexual mosaics induced by tetracycline treatment in the Wolbachia-infected adzuki bean borer, Ostrinias capulalis,Genome, 2003, vol. 46, pp. 983—989. https://doi.org/10.1139/g03-082

    Article  CAS  PubMed  Google Scholar 

  72. Kageyama, D. and Traut, W., Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinias capulalis,Proc. R. Soc. London, Ser. B, 2004, vol. 271, pp. 251—258. https://doi.org/10.1098/rspb.2003.2604

    Article  Google Scholar 

  73. Sakamoto, H., Kageyama, D., Hoshizaki, S., and Ishikawa, Y., Sex-specific death in the Asian corn borer moth (Ostrinia furnacalis) infected with Wolbachia occurs across larval development, Genome, 2007, vol. 50, pp. 645—652. https://doi.org/10.1139/g07-041

    Article  PubMed  Google Scholar 

  74. Sugimoto, T.N., Fujii, T., Kayukawa, T., et al., Expression of a double sex homologue is altered in sexual mosaics of Ostrinia scapulalis mothsi nfected with Wolbachia,Insect Biochem. Mol. Biol., 2010, vol. 40, pp. 847—854. https://doi.org/10.1016/j.ibmb.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  75. Katsuma, S., Kiuchi, T., Kawamoto, M., et al., Unique sex determination system in the silkworm, Bombyx mori: current status and beyond, Proc. Jpn. Acad.,Ser. B, 2018, vol. 94, no. 5, pp. 205—216. https://doi.org/10.2183/pjab.94.014

    Article  CAS  Google Scholar 

  76. Kiuchi, T., Koga, H., Kawamoto, M., et al., A single female-specific piRNA is the primary determiner of sex in the silkworm, Nature, 2014, vol. 509, pp. 633—636. https://doi.org/10.1038/nature13315

    Article  CAS  PubMed  Google Scholar 

  77. Fukui, T., Kiuchi, T., Shoji, K., et al., In vivo masculinizing function of the Ostrinia furnacalis Masculinizer gene, Biochem. Biophys. Res. Commun., 2018, vol. 503, no. 3, pp. 1768—1772. https://doi.org/10.1016/j.bbrc.2018.07.111

    Article  CAS  PubMed  Google Scholar 

  78. Williamson, D.L. and Poulson, D.F., Plant and insect mycoplasmas, in The Mycoplasmas, Whitcomb, R.F. and Tully, J.G., Eds., New York, 1979, vol. 3, chapter 6, pp. 175—208.

    Google Scholar 

  79. Martin, J., Chong, T., and Ferree, P.M., Male killing Spiroplasma preferentially disrupts neural development in the Drosophila melanogaster embryo, PLoS One, 2013, vol. 8, no. 11. e79368. https://doi.org/10.1371/journal.pone.0079368

    Article  PubMed  PubMed Central  Google Scholar 

  80. Harumoto, T., Anbutsu, H., and Fukatsu, T., Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway, PLoS Pathog., 2014, vol. 10, no. 2. e1003956. https://doi.org/10.1371/journal.ppat.1003956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gilfillan, G.D., Dahlsveen, I.K., and Becker, P.B., Lifting a chromosome: dosage compensation in Drosophila melanogaster,FEBS Lett., 2004, vol. 567, pp. 8—14. https://doi.org/10.1016/j.febslet.2004.03.110

    Article  CAS  PubMed  Google Scholar 

  82. Harumoto, T., Fukatsu, T., and Lemaitre, B., Common and unique strategies of male killing evolved in two distinct Drosophila symbionts, Proc. R. Soc. B, 2018, vol. 285, no. 1875, article 20172167.https://doi.org/10.1098/rspb.2017.2167

  83. Hurst, L.D., The incidences and evolution of cytoplasmic male killers, Proc. R. Soc. London, Ser. B, 1991, vol. 244, pp. 91—99. https://doi.org/10.1098/rspb.1991.0056

    Article  Google Scholar 

  84. Adachi-Hagimori, T., Miura, K., and Stouthamer, R., A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera, Proc. R. Soc. B, 2008, vol. 275, pp. 2667—2673. https://doi.org/10.1098/rspb.2008.0792

    Article  CAS  PubMed  Google Scholar 

  85. Rössler, Y. and Debach, P., The biosystematics relations between a thelytokous and an arrhenotokous form of Aphytis mytilaspidis (LeBaron) [Hymenoptera: Aphelinidae], Entomophaga, 1972, vol. 17, pp. 425—435.https://doi.org/10.1007/BF02371647

    Article  Google Scholar 

  86. Rössler, Y. and Debach, P., Genetic variability in athelytokous form of Aphytis mytilaspidis (LeBaron) (Hymenoptera: Aphelinidae), Hilgardia, 1973, vol. 42, pp. 149—176. https://doi.org/10.3733/hilg.v42n05p149

    Article  Google Scholar 

  87. Zchori-Fein, E., Perlman, S.J., Kelly, S.E., et al., Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae), Int. J. Syst. Evol. Microbiol., 2004, vol. 54, pp. 961—968.https://doi.org/10.1099/ijs.0.02957-0

    Article  CAS  PubMed  Google Scholar 

  88. Giorgini, M., Hunter, M.S., Mancini, D., and Pedata, P.A., Cytological evidence for two different mechanisms of thelytokous parthenogenesis in Encarsia parasitoids harbouring Wolbachia or Cardinium bacteria, in X European Workshop on Insect Parasitoids, Erice (Sicily), 2007, pp. 17—21. https://doi.org/10.13140/RG.2.1.4712.4243

  89. Pannebakker, B.A., Pijnacker, L.P., Zwaan, B.J., and Beukeboom, L.W., Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae), Genome, 2004, vol. 303, pp. 299—303. https://doi.org/10.1139/g03-137

    Article  Google Scholar 

  90. Gottlieb, Y., Zchori-Fein, E., Werren, J.H., and Karr, T.L., Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera: Pteromalidae), J. Invertebr. Pathol., 2002, vol. 81, pp. 166—174.https://doi.org/10.1016/S0022-2011(02)00149-0

    Article  PubMed  Google Scholar 

  91. Heimpel, G.E. and de Boer, J.G., Sex determination in the Hymenoptera, Annu. Rev. Entomol., 2008, vol. 53, pp. 209—230. https://doi.org/10.1146/annurev.ento.53.103106.093441

    Article  CAS  PubMed  Google Scholar 

  92. Ma, W.-J., Pannebakker, B.A., van de Zande, L., et al., Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp, BMC Evol. Biol., 2015, vol. 15, p. 84. https://doi.org/10.1186/s12862-015-0370-9

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tulgetske, G.M., Investigations into the mechanisms of Wolbachia-induced parthenogenesis and sex determination in the parasitoid wasp, Trichogramma, PhD thesis, Riverside, CA, 2010.

  94. Giorgini, M., Monti, M., Caprio, E., et al., Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium,Heredity, 2009, vol. 10, pp. 365—371. https://doi.org/10.1038/hdy.2008.135

    Article  Google Scholar 

  95. Hiroki, M., Tagami, Y., Miura, K., and Kato, Y., Multiple infection with Wolbachia inducing different reproductive manipulations in the butterfly Eurema hecabe,Proc. R. Soc. B, 2004, vol. 271, pp. 1751—1755. https://doi.org/10.1098/rspb.2004.2769

    Article  PubMed  Google Scholar 

  96. Narita, S., Kageyama, D., Nomura, M., and Fukatsu, T., Unexpected mechanism of symbiont-induced reversal of insect sex: feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development, Appl. Environ. Microbiol., 2007, vol. 73, pp. 4332—4341. https://doi.org/10.1128/AEM.00145-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Narita, S., Nomura, M., and Kageyama, D., Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain, FEMS Microbiol. Ecol., 2007, vol. 61, pp. 235—245. https://doi.org/10.1111/j.1574-6941.2007.00333.x

    Article  CAS  PubMed  Google Scholar 

  98. Narita, S., Kageyama, D., Hiroki, M., et al., Wolbachia-induced feminization newly found in Eurema hecabe, a sibling species of Eurema mandarina (Lepidoptera: Pieridae), Ecol. Entomol., 2011, vol. 36, pp. 309—317.https://doi.org/10.1111/j.1365-2311.2011.01274.x

    Article  Google Scholar 

  99. Negri, I., Pellecchia, M., and Mazzoglio, P.J., Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system, Proc. R. Soc. B, 2006, vol. 273, pp. 2409—2416.https://doi.org/10.1098/rspb.2006.3592

    Article  CAS  PubMed  Google Scholar 

  100. Kageyama, D., Ohno, M., Sasaki, T., et al., Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species, Evol. Lett., vol. 1, no. 5, pp. 232—244. https://doi.org/10.1002/evl3.28

  101. Negri, I., Franchini, A., Gonella, E., et al., Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting, Proc. R. Soc. B, 2009, vol. 276, pp. 2485—2491. https://doi.org/10.1098/rspb.2009.0324

    Article  CAS  PubMed  Google Scholar 

  102. Harris, H.L. and Braig, H.R., Sperm chromatin remodelling and Wolbachia-induced cytoplasmi cincompatibility in Drosophila,Biochem. Cell Biol., 2003, vol. 81, pp. 229—240. https://doi.org/10.1139/o03-053

    Article  CAS  PubMed  Google Scholar 

  103. Breeuwer, J.A. and Werren, J.H., Microorganisms associated with chromosome destruction and reproductive isolation between insect species, Nature, 1990, vol. 346, pp. 558—560. https://doi.org/10.1038/346558a0

    Article  CAS  PubMed  Google Scholar 

  104. Gebiola, M., Giorgini, M., Kelly, S.E., et al., Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia,Proc. R. Soc. B, 2017, vol. 284, article 20171433.https://doi.org/10.1098/rspb.2017.1433

    Article  CAS  PubMed  Google Scholar 

  105. Callaini, G., Dallai, R., and Riparbelli, M.G., Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans,J. Cell Sci., 1997, vol. 110, part 2, pp. 271—280.

    CAS  PubMed  Google Scholar 

  106. Tram, U., Fredrick, K., Werren, J.H., and Sullivan, W., Paternal chromosome segregation during the first mitotic division determines Wolbachia-induced cytoplasmic incompatibility phenotype, J. Cell Sci., 2006, vol. 119, pp. 3655—3663. https://doi.org/10.1242/jcs.03095

    Article  CAS  PubMed  Google Scholar 

  107. Penz, T., Schmitz-Esser, S., Kelly, S.E., et al., Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii,PLoS Genet., 2012, vol. 8, no. 10. e1003012. https://doi.org/10.1371/journal.pgen.1003012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vavre, F., Dedeine, F., Quillon, M., et al., Within-species diversity of Wolbachia-induced cytoplasmic incompatibility in haplodiploid insects, Evolution, 2001, vol. 55, pp. 1710—1714. https://doi.org/10.1111/j.0014-3820.2001.tb00691.x

  109. Reed, K.M. and Werren, J.H., Induction of paternal genome loss by the paternal-sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia): a comparative study of early embryonic events, Mol. Reprod. Dev., 1995, vol. 40, pp. 408—418. https://doi.org/10.1002/mrd.1080400404

    Article  CAS  PubMed  Google Scholar 

  110. Zabalou, S., Apostolaki, A., Pattas, S., et al., Multiple rescue factors within a Wolbachia strain, Genetics, 2008, vol. 178, pp. 2145—2160. https://doi.org/10.1534/genetics.107.086488

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hurst, L.D., The evolution of cytoplasmic incompatibility or when spite can be successful, J. Theor. Biol., 1991, vol. 148, pp. 269—277. https://doi.org/10.1016/S0022-5193(05)80344-3

    Article  CAS  PubMed  Google Scholar 

  112. Beckmann, J.F. and Fallon, A.M., Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility, Insect Biochem. Mol. Biol., 2013, vol. 43, pp. 867—878. https://doi.org/10.1016/j.ibmb.2013.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Poinsot, D., Charlat, S., and Mercot, H., On the mechanism of Wolbachia-induced cytoplasmic incompatibility: confronting the models with the facts, BioEssays, 2003, vol. 25, pp. 259—265. https://doi.org/10.1002/bies.10234

    Article  PubMed  Google Scholar 

  114. Beckmann, J.F., Ronau, J., and Hochstrasser, M., A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility, Nat. Microbiol., 2017, vol. 2, article number 17007. https://doi.org/10.1038/nmicrobiol.2017.7

  115. Serbus, L.R., Casper-Lindley, C., Landmann, F., and Sullivan, W., The genetics and cell biology of Wolbachia—host interactions, Ann. Rev. Genet., 2008, vol. 42, pp. 683—707. https://doi.org/10.1146/annurev.genet.41.110306.130354

    Article  CAS  PubMed  Google Scholar 

  116. Bordenstein, S.R. and Bordenstein, S.R., Lateral genetic transfers between eukaryotes and bacteriophages, BioRxiv, 2016. https://doi.org/10.1101/049049

  117. Lorenzen, M.D., Gnirke, A., Margolis, J., et al., The maternal-effect, selfish genetic element Medea is associated with a composite Tc1 transposon, Proc. Natl. Acad. Sci. U.S.A.,2008, vol. 105, pp. 10085—10089. https://doi.org/10.1073/pnas.0800444105

    Article  PubMed  PubMed Central  Google Scholar 

  118. Iyer, L.M., Burroughs, A.M., and Aravind, L., The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains, Genome Biol., 2006, vol. 7, no. 7, article R60. https://doi.org/10.1186/gb-2006-7-7-r60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tikhonovich, I.A. and Provorov, N.A., Epigenetics of ecological niches, Ecol. Genet., 2010, vol. 8, no. 4, pp. 30—38.

    Article  Google Scholar 

  120. Provorov, N.A. and Tikhonovich, I.A., Supraspecies genetic systems, Biol. Bull. Rev., 2015, vol. 5, pp. 247—260.

    Article  Google Scholar 

  121. Zilber-Rosenberg, I. and Rosenberg, E., Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev., 2008, vol. 32, pp. 723—735.

    Article  CAS  Google Scholar 

  122. Zakharov, I.A., Horizontal gene transfer into the genomes of insects, Russ. J. Genet., 2016, vol. 52, no. 7, pp. 702—707. https://doi.org/10.1134/S1022795416070115

    Article  CAS  Google Scholar 

Download references

Funding

The study of I.A. Zakharov was supported by the Russian Foundation for Basic Research (“Expansion” project, grant no. 19-14-50698).

The study of I.I. Goryacheva (not a participant of the Russian Foundation for Basic Research “Expansion” project, grant no. 19-14-50698) was supported by the Russian Science Foundation (grant no. 16-16-00079-P).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Zakharov or I. I. Goryacheva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, I.A., Goryacheva, I.I. Hereditary Symbionts: Genomic Integration. Russ J Genet 56, 639–654 (2020). https://doi.org/10.1134/S1022795420060125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420060125

Keywords:

Navigation