Skip to main content
Log in

FAS, YABBY2, and YABBY5 Gene Expression Profile Correlates with Different Fruit Locule Number in Tomato

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Analysis of 30 tomato cultivars with different fruit locule numbers revealed four cultivars with multi-locular fruits carrying a null mutation in the SlFAS gene. It was shown that cultivars with more than two fruit locules contain two SNPs, associated with the multi-locule trait, at the locule number locus. Co-expression profile of SlFAS, SlYABBY2 and SlYABBY5 genes was determined in a young bud and at three stages of fruit development in three tomato cultivars contrasting in the fruit locule number. In the Cœur de bœuf cultivar (≥10 locules), SlFAS transcripts were absent in all analyzed tissues. In addition, compared with the Red Cherry (2 locules) and Viking (5–6 locules) cultivars, in the Cœur de bœuf bud and fruits, the transcription levels of SlYABBY2 and SlYABBY5 were considerably lower and higher, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Barrero, L.S. and Tanksley, S.D., Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars, Theor. Appl. Genet., 2004, vol. 109, pp. 669—679.

    Article  CAS  Google Scholar 

  2. Peralta, I.E., Spooner, D.M., and Knapp, S., Taxonomy of Wild Tomatoes and Their Relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae), vol. 84 of Systematic Botany Monographs, American Society of Plant Taxonomists, U.S.A., 2008, pp. 1—186.

  3. Tanksley, S.D., The genetic, developmental, and molecular bases of fruit size and shape variation in tomato, Plant Cell, 2004, vol. 16, no. Sl, pp. S181—S189.

  4. Cong, B., Barrero, L.S., and Tanksley, S.D., Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication, Nat. Genet., 2008, vol. 40, no. 6, pp. 800—804. https://doi.org/10.1038/ng.144

    Article  CAS  PubMed  Google Scholar 

  5. Muños, S., Ranc, N., Botton, E., et al., Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL,Plant Physiol., 2011, vol. 156, no. 4, pp. 2244—2254. https://doi.org/10.1104/pp.111.173997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark, S.E., Cell signalling at the shoot meristem, Nat. Rev. Mol. Cell Biol., 2011, vol. 2, pp. 276—284.

    Article  Google Scholar 

  7. Lenhard, M., Bohnert, A., Jürgens, G., and Laux, T., Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS,Cell, 2001, vol. 105, no. 6, pp. 805—814.

    Article  CAS  Google Scholar 

  8. Leyser, H.M.O. and Furner, I.J., Characterization of 3 shoot apical meristem mutants of Arabidopsis thaliana,Development, 1992, vol. 116, pp. 397—403.

    Google Scholar 

  9. Huang, Z. and van der Knaap, E., Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11, Theor. Appl. Genet., 2011, vol. 123, no. 3, pp. 465—474. https://doi.org/10.1007/s00122-011-1599-3

    Article  PubMed  Google Scholar 

  10. Finet, C., Floyd, S.K., Conway, S.J., et al., Evolution of the YABBY gene family in seed plants, Evol. Dev., 2016, vol. 18, no. 2, pp. 116—126. https://doi.org/10.1111/ede.12173

    Article  PubMed  Google Scholar 

  11. Huang, Z., Van Houten, J., Gonzalez, G., et al., Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato, Mol. Genet. Genomics, 2013, vol. 288, nos. 3—4, pp. 111—129. https://doi.org/10.1007/s00438-013-0733-0

    Article  CAS  PubMed  Google Scholar 

  12. Han, H.Q., Liu, Y., Jiang, M.M., et al., Identification and expression analysis of YABBY family genes associated with fruit shape in tomato (Solanum lycopersicum L.), Genet. Mol. Res., 2015, vol. 14, no. 2, pp. 7079—7091. https://doi.org/10.4238/2015.June.29.1

    Article  CAS  PubMed  Google Scholar 

  13. Filyushin, M.A., Slugina, M.A., Shchennikova, A.V., and Kochieva, E.Z., YABBY3-orthologous genes in wild tomato species: structure, variability, and expression, Acta Nat., 2017, vol. 9, no. 4(35), pp. 106—115.

  14. Filyushin, M.A., Slugina, M.A., Shchennikova, A.V., and Kochieva, E.Z., Identification and expression analysis of the YABBY1 gene in wild tomato species, Russ. J. Genet., 2018, vol. 54, no. 5, pp. 536—547. https://doi.org/10.1134/S1022795418050022

    Article  CAS  Google Scholar 

  15. Yang, C., Ma, Y., and Li, J., The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway, J. Exp. Bot., 2016, vol. 67, no. 18, pp. 5545—5556.

    Article  CAS  Google Scholar 

  16. Shchennikova, A.V., Slugina, M.A., Beletsky, A.V., et al., The YABBY genes of leaf and leaf-like organ polarity in leafless plant Monotropa hypopitys,Int. J. Genomics, 2018, vol. 15, article ID 7203469. https://doi.org/10.1155/2018/7203469

    Article  Google Scholar 

  17. Bowman, J.L., The YABBY gene family and abaxial cell fate, Curr. Opin. Plant Biol., 2000, vol. 3, no. 1, pp. 17—22.

    Article  CAS  Google Scholar 

  18. Sarojam, R., Sapp, P.J., Goldshmidt, A., et al., Differentiating Arabidopsis shoots from leaves by combined YABBY activities, Plant Cell, 2010, vol. 22, pp. 2113—2130. https://doi.org/10.1105/tpc.110.075853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Almeida, A.M., Yockteng, R., Schnable, J., et al., Co-option of the polarity gene network shapes filament morphology in angiosperms, Sci. Rep., 2014, vol. 4, article 6194. https://doi.org/10.1038/srep06194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stahle, M., Kuehlich, J., Staron, L., et al., YABBYs and the transcriptional corepressors LEUNIG and LEUNIG_HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis,Plant Cell, 2009, vol. 21, pp. 3105—3118.

    Article  CAS  Google Scholar 

  21. Expósito-Rodríguez, M., Borges, A.A., Borges-Pérez, A., and Pérez, J.A., Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process, BMC Plant Biol., 2008, vol. 8, article 131. https://doi.org/10.1186/1471-2229-8-131

  22. Bemer, M., Karlova, R., Ballester, A.R., et al., The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening, Plant Cell, 2017, vol. 24, no. 11, pp. 4437—4451. https://doi.org/10.1105/tpc.112.103283

    Article  CAS  Google Scholar 

  23. Kanaya, E., Nakajima, N., and Okada, K., Non-sequence-specific DNA binding by the FILAMENTOUS FLOWER protein from Arabidopsis thaliana is reduced by EDTA, J. Biol. Chem., 2002, vol. 277, no. 14, pp. 11957—11964.

    Article  CAS  Google Scholar 

  24. Li, H., Qi, M., Sun, M., et al., Tomato transcription factor SlWUS plays an important role in tomato flower and locule development, Front. Plant Sci., 2017, vol. 8, article 457. https://doi.org/10.3389/fpls.2017.00457

    Article  PubMed  PubMed Central  Google Scholar 

  25. van der Knaap, E., Chakrabarti, M., Chu, Y.H., et al., What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape, Front. Plant Sci., 2014, vol. 5, article 227.

    Article  Google Scholar 

  26. Yanofsky, M.F., Ma, H., Bowman, J.L., et al., The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors, Nature, 1990, vol. 346, pp. 35—39.

    Article  CAS  Google Scholar 

  27. Lippman, Z. and Tanksley, S.D., Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom, Genetics, 2001, vol. 158, no. 1, pp. 413—422.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experiments were performed using the experimental climate control facility (Federal Research Center Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow).

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 18-29-07007) and the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Filyushin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slugina, M.A., Filyushin, M.A., Shchennikova, A.V. et al. FAS, YABBY2, and YABBY5 Gene Expression Profile Correlates with Different Fruit Locule Number in Tomato. Russ J Genet 56, 410–416 (2020). https://doi.org/10.1134/S1022795420030151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420030151

Keywords:

Navigation